Metamath Proof Explorer


Theorem cbvrabcsfw

Description: Version of cbvrabcsf with a disjoint variable condition, which does not require ax-13 . (Contributed by Andrew Salmon, 13-Jul-2011) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Hypotheses cbvrabcsfw.1 _yA
cbvrabcsfw.2 _xB
cbvrabcsfw.3 yφ
cbvrabcsfw.4 xψ
cbvrabcsfw.5 x=yA=B
cbvrabcsfw.6 x=yφψ
Assertion cbvrabcsfw xA|φ=yB|ψ

Proof

Step Hyp Ref Expression
1 cbvrabcsfw.1 _yA
2 cbvrabcsfw.2 _xB
3 cbvrabcsfw.3 yφ
4 cbvrabcsfw.4 xψ
5 cbvrabcsfw.5 x=yA=B
6 cbvrabcsfw.6 x=yφψ
7 nfv zxAφ
8 nfcsb1v _xz/xA
9 8 nfcri xzz/xA
10 nfs1v xzxφ
11 9 10 nfan xzz/xAzxφ
12 id x=zx=z
13 csbeq1a x=zA=z/xA
14 12 13 eleq12d x=zxAzz/xA
15 sbequ12 x=zφzxφ
16 14 15 anbi12d x=zxAφzz/xAzxφ
17 7 11 16 cbvabw x|xAφ=z|zz/xAzxφ
18 nfcv _yz
19 18 1 nfcsbw _yz/xA
20 19 nfcri yzz/xA
21 3 nfsbv yzxφ
22 20 21 nfan yzz/xAzxφ
23 nfv zyBψ
24 id z=yz=y
25 csbeq1 z=yz/xA=y/xA
26 vex yV
27 26 2 5 csbief y/xA=B
28 25 27 eqtrdi z=yz/xA=B
29 24 28 eleq12d z=yzz/xAyB
30 4 6 sbhypf z=yzxφψ
31 29 30 anbi12d z=yzz/xAzxφyBψ
32 22 23 31 cbvabw z|zz/xAzxφ=y|yBψ
33 17 32 eqtri x|xAφ=y|yBψ
34 df-rab xA|φ=x|xAφ
35 df-rab yB|ψ=y|yBψ
36 33 34 35 3eqtr4i xA|φ=yB|ψ