Metamath Proof Explorer


Theorem cbvrexsvwOLD

Description: Obsolete version of cbvrexsvw as of 8-Mar-2025. (Contributed by NM, 20-Nov-2005) Avoid ax-13 . (Revised by Gino Giotto, 10-Jan-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion cbvrexsvwOLD
|- ( E. x e. A ph <-> E. y e. A [ y / x ] ph )

Proof

Step Hyp Ref Expression
1 nfv
 |-  F/ z ph
2 nfs1v
 |-  F/ x [ z / x ] ph
3 sbequ12
 |-  ( x = z -> ( ph <-> [ z / x ] ph ) )
4 1 2 3 cbvrexw
 |-  ( E. x e. A ph <-> E. z e. A [ z / x ] ph )
5 nfv
 |-  F/ y [ z / x ] ph
6 nfv
 |-  F/ z [ y / x ] ph
7 sbequ
 |-  ( z = y -> ( [ z / x ] ph <-> [ y / x ] ph ) )
8 5 6 7 cbvrexw
 |-  ( E. z e. A [ z / x ] ph <-> E. y e. A [ y / x ] ph )
9 4 8 bitri
 |-  ( E. x e. A ph <-> E. y e. A [ y / x ] ph )