Metamath Proof Explorer


Theorem cbvrexvw2

Description: Change bound variable and domain in the restricted existential quantifier, using implicit substitution. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvrexvw2.1
|- ( x = y -> A = B )
cbvrexvw2.2
|- ( x = y -> ( ph <-> ps ) )
Assertion cbvrexvw2
|- ( E. x e. A ph <-> E. y e. B ps )

Proof

Step Hyp Ref Expression
1 cbvrexvw2.1
 |-  ( x = y -> A = B )
2 cbvrexvw2.2
 |-  ( x = y -> ( ph <-> ps ) )
3 eleq1w
 |-  ( x = y -> ( x e. A <-> y e. A ) )
4 1 eleq2d
 |-  ( x = y -> ( y e. A <-> y e. B ) )
5 3 4 bitrd
 |-  ( x = y -> ( x e. A <-> y e. B ) )
6 5 2 anbi12d
 |-  ( x = y -> ( ( x e. A /\ ph ) <-> ( y e. B /\ ps ) ) )
7 6 cbvexvw
 |-  ( E. x ( x e. A /\ ph ) <-> E. y ( y e. B /\ ps ) )
8 df-rex
 |-  ( E. x e. A ph <-> E. x ( x e. A /\ ph ) )
9 df-rex
 |-  ( E. y e. B ps <-> E. y ( y e. B /\ ps ) )
10 7 8 9 3bitr4i
 |-  ( E. x e. A ph <-> E. y e. B ps )