Description: Change bound variable of a class substitution. Deduction form. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cbvsbcdavw.1 | |- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
|
Assertion | cbvsbcdavw | |- ( ph -> ( [. A / x ]. ps <-> [. A / y ]. ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsbcdavw.1 | |- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
|
2 | 1 | cbvabdavw | |- ( ph -> { x | ps } = { y | ch } ) |
3 | 2 | eleq2d | |- ( ph -> ( A e. { x | ps } <-> A e. { y | ch } ) ) |
4 | df-sbc | |- ( [. A / x ]. ps <-> A e. { x | ps } ) |
|
5 | df-sbc | |- ( [. A / y ]. ch <-> A e. { y | ch } ) |
|
6 | 3 4 5 | 3bitr4g | |- ( ph -> ( [. A / x ]. ps <-> [. A / y ]. ch ) ) |