Metamath Proof Explorer


Theorem cbvsbcdavw

Description: Change bound variable of a class substitution. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvsbcdavw.1
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion cbvsbcdavw
|- ( ph -> ( [. A / x ]. ps <-> [. A / y ]. ch ) )

Proof

Step Hyp Ref Expression
1 cbvsbcdavw.1
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
2 1 cbvabdavw
 |-  ( ph -> { x | ps } = { y | ch } )
3 2 eleq2d
 |-  ( ph -> ( A e. { x | ps } <-> A e. { y | ch } ) )
4 df-sbc
 |-  ( [. A / x ]. ps <-> A e. { x | ps } )
5 df-sbc
 |-  ( [. A / y ]. ch <-> A e. { y | ch } )
6 3 4 5 3bitr4g
 |-  ( ph -> ( [. A / x ]. ps <-> [. A / y ]. ch ) )