Metamath Proof Explorer


Theorem cbvabdavw

Description: Change bound variable in class abstractions. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvabdavw.1
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion cbvabdavw
|- ( ph -> { x | ps } = { y | ch } )

Proof

Step Hyp Ref Expression
1 cbvabdavw.1
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
2 1 cbvsbdavw
 |-  ( ph -> ( [ t / x ] ps <-> [ t / y ] ch ) )
3 df-clab
 |-  ( t e. { x | ps } <-> [ t / x ] ps )
4 df-clab
 |-  ( t e. { y | ch } <-> [ t / y ] ch )
5 2 3 4 3bitr4g
 |-  ( ph -> ( t e. { x | ps } <-> t e. { y | ch } ) )
6 5 eqrdv
 |-  ( ph -> { x | ps } = { y | ch } )