Metamath Proof Explorer


Theorem cbvsbdavw

Description: Change bound variable in proper substitution. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvsbdavw.1
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion cbvsbdavw
|- ( ph -> ( [ z / x ] ps <-> [ z / y ] ch ) )

Proof

Step Hyp Ref Expression
1 cbvsbdavw.1
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
2 equequ1
 |-  ( x = y -> ( x = t <-> y = t ) )
3 2 adantl
 |-  ( ( ph /\ x = y ) -> ( x = t <-> y = t ) )
4 3 1 imbi12d
 |-  ( ( ph /\ x = y ) -> ( ( x = t -> ps ) <-> ( y = t -> ch ) ) )
5 4 cbvaldvaw
 |-  ( ph -> ( A. x ( x = t -> ps ) <-> A. y ( y = t -> ch ) ) )
6 5 imbi2d
 |-  ( ph -> ( ( t = z -> A. x ( x = t -> ps ) ) <-> ( t = z -> A. y ( y = t -> ch ) ) ) )
7 6 albidv
 |-  ( ph -> ( A. t ( t = z -> A. x ( x = t -> ps ) ) <-> A. t ( t = z -> A. y ( y = t -> ch ) ) ) )
8 df-sb
 |-  ( [ z / x ] ps <-> A. t ( t = z -> A. x ( x = t -> ps ) ) )
9 df-sb
 |-  ( [ z / y ] ch <-> A. t ( t = z -> A. y ( y = t -> ch ) ) )
10 7 8 9 3bitr4g
 |-  ( ph -> ( [ z / x ] ps <-> [ z / y ] ch ) )