Step |
Hyp |
Ref |
Expression |
1 |
|
cbvsbdavw.1 |
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
2 |
|
equequ1 |
|- ( x = y -> ( x = t <-> y = t ) ) |
3 |
2
|
adantl |
|- ( ( ph /\ x = y ) -> ( x = t <-> y = t ) ) |
4 |
3 1
|
imbi12d |
|- ( ( ph /\ x = y ) -> ( ( x = t -> ps ) <-> ( y = t -> ch ) ) ) |
5 |
4
|
cbvaldvaw |
|- ( ph -> ( A. x ( x = t -> ps ) <-> A. y ( y = t -> ch ) ) ) |
6 |
5
|
imbi2d |
|- ( ph -> ( ( t = z -> A. x ( x = t -> ps ) ) <-> ( t = z -> A. y ( y = t -> ch ) ) ) ) |
7 |
6
|
albidv |
|- ( ph -> ( A. t ( t = z -> A. x ( x = t -> ps ) ) <-> A. t ( t = z -> A. y ( y = t -> ch ) ) ) ) |
8 |
|
df-sb |
|- ( [ z / x ] ps <-> A. t ( t = z -> A. x ( x = t -> ps ) ) ) |
9 |
|
df-sb |
|- ( [ z / y ] ch <-> A. t ( t = z -> A. y ( y = t -> ch ) ) ) |
10 |
7 8 9
|
3bitr4g |
|- ( ph -> ( [ z / x ] ps <-> [ z / y ] ch ) ) |