Metamath Proof Explorer


Theorem cbvsbdavw2

Description: Change bound variable in proper substitution. General version of cbvsbdavw . Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvsbdavw2.1
|- ( ph -> z = w )
cbvsbdavw2.2
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion cbvsbdavw2
|- ( ph -> ( [ z / x ] ps <-> [ w / y ] ch ) )

Proof

Step Hyp Ref Expression
1 cbvsbdavw2.1
 |-  ( ph -> z = w )
2 cbvsbdavw2.2
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
3 equequ2
 |-  ( z = w -> ( t = z <-> t = w ) )
4 1 3 syl
 |-  ( ph -> ( t = z <-> t = w ) )
5 equequ1
 |-  ( x = y -> ( x = t <-> y = t ) )
6 5 adantl
 |-  ( ( ph /\ x = y ) -> ( x = t <-> y = t ) )
7 6 2 imbi12d
 |-  ( ( ph /\ x = y ) -> ( ( x = t -> ps ) <-> ( y = t -> ch ) ) )
8 7 cbvaldvaw
 |-  ( ph -> ( A. x ( x = t -> ps ) <-> A. y ( y = t -> ch ) ) )
9 4 8 imbi12d
 |-  ( ph -> ( ( t = z -> A. x ( x = t -> ps ) ) <-> ( t = w -> A. y ( y = t -> ch ) ) ) )
10 9 albidv
 |-  ( ph -> ( A. t ( t = z -> A. x ( x = t -> ps ) ) <-> A. t ( t = w -> A. y ( y = t -> ch ) ) ) )
11 df-sb
 |-  ( [ z / x ] ps <-> A. t ( t = z -> A. x ( x = t -> ps ) ) )
12 df-sb
 |-  ( [ w / y ] ch <-> A. t ( t = w -> A. y ( y = t -> ch ) ) )
13 10 11 12 3bitr4g
 |-  ( ph -> ( [ z / x ] ps <-> [ w / y ] ch ) )