Step |
Hyp |
Ref |
Expression |
1 |
|
cbvsbdavw2.1 |
|- ( ph -> z = w ) |
2 |
|
cbvsbdavw2.2 |
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
3 |
|
equequ2 |
|- ( z = w -> ( t = z <-> t = w ) ) |
4 |
1 3
|
syl |
|- ( ph -> ( t = z <-> t = w ) ) |
5 |
|
equequ1 |
|- ( x = y -> ( x = t <-> y = t ) ) |
6 |
5
|
adantl |
|- ( ( ph /\ x = y ) -> ( x = t <-> y = t ) ) |
7 |
6 2
|
imbi12d |
|- ( ( ph /\ x = y ) -> ( ( x = t -> ps ) <-> ( y = t -> ch ) ) ) |
8 |
7
|
cbvaldvaw |
|- ( ph -> ( A. x ( x = t -> ps ) <-> A. y ( y = t -> ch ) ) ) |
9 |
4 8
|
imbi12d |
|- ( ph -> ( ( t = z -> A. x ( x = t -> ps ) ) <-> ( t = w -> A. y ( y = t -> ch ) ) ) ) |
10 |
9
|
albidv |
|- ( ph -> ( A. t ( t = z -> A. x ( x = t -> ps ) ) <-> A. t ( t = w -> A. y ( y = t -> ch ) ) ) ) |
11 |
|
df-sb |
|- ( [ z / x ] ps <-> A. t ( t = z -> A. x ( x = t -> ps ) ) ) |
12 |
|
df-sb |
|- ( [ w / y ] ch <-> A. t ( t = w -> A. y ( y = t -> ch ) ) ) |
13 |
10 11 12
|
3bitr4g |
|- ( ph -> ( [ z / x ] ps <-> [ w / y ] ch ) ) |