Step |
Hyp |
Ref |
Expression |
1 |
|
cbvsbdavw2.1 |
⊢ ( 𝜑 → 𝑧 = 𝑤 ) |
2 |
|
cbvsbdavw2.2 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) |
3 |
|
equequ2 |
⊢ ( 𝑧 = 𝑤 → ( 𝑡 = 𝑧 ↔ 𝑡 = 𝑤 ) ) |
4 |
1 3
|
syl |
⊢ ( 𝜑 → ( 𝑡 = 𝑧 ↔ 𝑡 = 𝑤 ) ) |
5 |
|
equequ1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝑡 ↔ 𝑦 = 𝑡 ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑥 = 𝑡 ↔ 𝑦 = 𝑡 ) ) |
7 |
6 2
|
imbi12d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( ( 𝑥 = 𝑡 → 𝜓 ) ↔ ( 𝑦 = 𝑡 → 𝜒 ) ) ) |
8 |
7
|
cbvaldvaw |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑡 → 𝜒 ) ) ) |
9 |
4 8
|
imbi12d |
⊢ ( 𝜑 → ( ( 𝑡 = 𝑧 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ) ↔ ( 𝑡 = 𝑤 → ∀ 𝑦 ( 𝑦 = 𝑡 → 𝜒 ) ) ) ) |
10 |
9
|
albidv |
⊢ ( 𝜑 → ( ∀ 𝑡 ( 𝑡 = 𝑧 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ) ↔ ∀ 𝑡 ( 𝑡 = 𝑤 → ∀ 𝑦 ( 𝑦 = 𝑡 → 𝜒 ) ) ) ) |
11 |
|
df-sb |
⊢ ( [ 𝑧 / 𝑥 ] 𝜓 ↔ ∀ 𝑡 ( 𝑡 = 𝑧 → ∀ 𝑥 ( 𝑥 = 𝑡 → 𝜓 ) ) ) |
12 |
|
df-sb |
⊢ ( [ 𝑤 / 𝑦 ] 𝜒 ↔ ∀ 𝑡 ( 𝑡 = 𝑤 → ∀ 𝑦 ( 𝑦 = 𝑡 → 𝜒 ) ) ) |
13 |
10 11 12
|
3bitr4g |
⊢ ( 𝜑 → ( [ 𝑧 / 𝑥 ] 𝜓 ↔ [ 𝑤 / 𝑦 ] 𝜒 ) ) |