Metamath Proof Explorer


Theorem cbvabdavw

Description: Change bound variable in class abstractions. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvabdavw.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
Assertion cbvabdavw ( 𝜑 → { 𝑥𝜓 } = { 𝑦𝜒 } )

Proof

Step Hyp Ref Expression
1 cbvabdavw.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
2 1 cbvsbdavw ( 𝜑 → ( [ 𝑡 / 𝑥 ] 𝜓 ↔ [ 𝑡 / 𝑦 ] 𝜒 ) )
3 df-clab ( 𝑡 ∈ { 𝑥𝜓 } ↔ [ 𝑡 / 𝑥 ] 𝜓 )
4 df-clab ( 𝑡 ∈ { 𝑦𝜒 } ↔ [ 𝑡 / 𝑦 ] 𝜒 )
5 2 3 4 3bitr4g ( 𝜑 → ( 𝑡 ∈ { 𝑥𝜓 } ↔ 𝑡 ∈ { 𝑦𝜒 } ) )
6 5 eqrdv ( 𝜑 → { 𝑥𝜓 } = { 𝑦𝜒 } )