Description: Change bound variable in class abstractions. Deduction form. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cbvabdavw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
Assertion | cbvabdavw | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } = { 𝑦 ∣ 𝜒 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvabdavw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
2 | 1 | cbvsbdavw | ⊢ ( 𝜑 → ( [ 𝑡 / 𝑥 ] 𝜓 ↔ [ 𝑡 / 𝑦 ] 𝜒 ) ) |
3 | df-clab | ⊢ ( 𝑡 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑡 / 𝑥 ] 𝜓 ) | |
4 | df-clab | ⊢ ( 𝑡 ∈ { 𝑦 ∣ 𝜒 } ↔ [ 𝑡 / 𝑦 ] 𝜒 ) | |
5 | 2 3 4 | 3bitr4g | ⊢ ( 𝜑 → ( 𝑡 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝑡 ∈ { 𝑦 ∣ 𝜒 } ) ) |
6 | 5 | eqrdv | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } = { 𝑦 ∣ 𝜒 } ) |