Metamath Proof Explorer


Theorem cbvsbcdavw

Description: Change bound variable of a class substitution. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvsbcdavw.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
Assertion cbvsbcdavw ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓[ 𝐴 / 𝑦 ] 𝜒 ) )

Proof

Step Hyp Ref Expression
1 cbvsbcdavw.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
2 1 cbvabdavw ( 𝜑 → { 𝑥𝜓 } = { 𝑦𝜒 } )
3 2 eleq2d ( 𝜑 → ( 𝐴 ∈ { 𝑥𝜓 } ↔ 𝐴 ∈ { 𝑦𝜒 } ) )
4 df-sbc ( [ 𝐴 / 𝑥 ] 𝜓𝐴 ∈ { 𝑥𝜓 } )
5 df-sbc ( [ 𝐴 / 𝑦 ] 𝜒𝐴 ∈ { 𝑦𝜒 } )
6 3 4 5 3bitr4g ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓[ 𝐴 / 𝑦 ] 𝜒 ) )