Description: Change bound variable of a class substitution. Deduction form. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cbvsbcdavw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
Assertion | cbvsbcdavw | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ [ 𝐴 / 𝑦 ] 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsbcdavw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
2 | 1 | cbvabdavw | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } = { 𝑦 ∣ 𝜒 } ) |
3 | 2 | eleq2d | ⊢ ( 𝜑 → ( 𝐴 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝐴 ∈ { 𝑦 ∣ 𝜒 } ) ) |
4 | df-sbc | ⊢ ( [ 𝐴 / 𝑥 ] 𝜓 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜓 } ) | |
5 | df-sbc | ⊢ ( [ 𝐴 / 𝑦 ] 𝜒 ↔ 𝐴 ∈ { 𝑦 ∣ 𝜒 } ) | |
6 | 3 4 5 | 3bitr4g | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ [ 𝐴 / 𝑦 ] 𝜒 ) ) |