Metamath Proof Explorer


Theorem cbvsbcdavw2

Description: Change bound variable of a class substitution. General version of cbvsbcdavw . Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvsbcdavw2.1 ( 𝜑𝐴 = 𝐵 )
cbvsbcdavw2.2 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
Assertion cbvsbcdavw2 ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓[ 𝐵 / 𝑦 ] 𝜒 ) )

Proof

Step Hyp Ref Expression
1 cbvsbcdavw2.1 ( 𝜑𝐴 = 𝐵 )
2 cbvsbcdavw2.2 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
3 2 cbvabdavw ( 𝜑 → { 𝑥𝜓 } = { 𝑦𝜒 } )
4 1 3 eleq12d ( 𝜑 → ( 𝐴 ∈ { 𝑥𝜓 } ↔ 𝐵 ∈ { 𝑦𝜒 } ) )
5 df-sbc ( [ 𝐴 / 𝑥 ] 𝜓𝐴 ∈ { 𝑥𝜓 } )
6 df-sbc ( [ 𝐵 / 𝑦 ] 𝜒𝐵 ∈ { 𝑦𝜒 } )
7 4 5 6 3bitr4g ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓[ 𝐵 / 𝑦 ] 𝜒 ) )