Description: Change bound variable of a class substitution. General version of cbvsbcdavw . Deduction form. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cbvsbcdavw2.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
cbvsbcdavw2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | ||
Assertion | cbvsbcdavw2 | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ [ 𝐵 / 𝑦 ] 𝜒 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvsbcdavw2.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
2 | cbvsbcdavw2.2 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
3 | 2 | cbvabdavw | ⊢ ( 𝜑 → { 𝑥 ∣ 𝜓 } = { 𝑦 ∣ 𝜒 } ) |
4 | 1 3 | eleq12d | ⊢ ( 𝜑 → ( 𝐴 ∈ { 𝑥 ∣ 𝜓 } ↔ 𝐵 ∈ { 𝑦 ∣ 𝜒 } ) ) |
5 | df-sbc | ⊢ ( [ 𝐴 / 𝑥 ] 𝜓 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜓 } ) | |
6 | df-sbc | ⊢ ( [ 𝐵 / 𝑦 ] 𝜒 ↔ 𝐵 ∈ { 𝑦 ∣ 𝜒 } ) | |
7 | 4 5 6 | 3bitr4g | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 ↔ [ 𝐵 / 𝑦 ] 𝜒 ) ) |