Metamath Proof Explorer


Theorem cbvsbcdavw2

Description: Change bound variable of a class substitution. General version of cbvsbcdavw . Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvsbcdavw2.1 φ A = B
cbvsbcdavw2.2 φ x = y ψ χ
Assertion cbvsbcdavw2 φ [˙A / x]˙ ψ [˙B / y]˙ χ

Proof

Step Hyp Ref Expression
1 cbvsbcdavw2.1 φ A = B
2 cbvsbcdavw2.2 φ x = y ψ χ
3 2 cbvabdavw φ x | ψ = y | χ
4 1 3 eleq12d φ A x | ψ B y | χ
5 df-sbc [˙A / x]˙ ψ A x | ψ
6 df-sbc [˙B / y]˙ χ B y | χ
7 4 5 6 3bitr4g φ [˙A / x]˙ ψ [˙B / y]˙ χ