Metamath Proof Explorer


Theorem cbvcsbdavw

Description: Change bound variable of a proper substitution into a class. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvcsbdavw.1 φ x = y B = C
Assertion cbvcsbdavw φ A / x B = A / y C

Proof

Step Hyp Ref Expression
1 cbvcsbdavw.1 φ x = y B = C
2 1 eleq2d φ x = y t B t C
3 2 cbvsbcdavw φ [˙A / x]˙ t B [˙A / y]˙ t C
4 3 abbidv φ t | [˙A / x]˙ t B = t | [˙A / y]˙ t C
5 df-csb A / x B = t | [˙A / x]˙ t B
6 df-csb A / y C = t | [˙A / y]˙ t C
7 4 5 6 3eqtr4g φ A / x B = A / y C