Metamath Proof Explorer


Theorem cbvcsbdavw

Description: Change bound variable of a proper substitution into a class. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvcsbdavw.1
|- ( ( ph /\ x = y ) -> B = C )
Assertion cbvcsbdavw
|- ( ph -> [_ A / x ]_ B = [_ A / y ]_ C )

Proof

Step Hyp Ref Expression
1 cbvcsbdavw.1
 |-  ( ( ph /\ x = y ) -> B = C )
2 1 eleq2d
 |-  ( ( ph /\ x = y ) -> ( t e. B <-> t e. C ) )
3 2 cbvsbcdavw
 |-  ( ph -> ( [. A / x ]. t e. B <-> [. A / y ]. t e. C ) )
4 3 abbidv
 |-  ( ph -> { t | [. A / x ]. t e. B } = { t | [. A / y ]. t e. C } )
5 df-csb
 |-  [_ A / x ]_ B = { t | [. A / x ]. t e. B }
6 df-csb
 |-  [_ A / y ]_ C = { t | [. A / y ]. t e. C }
7 4 5 6 3eqtr4g
 |-  ( ph -> [_ A / x ]_ B = [_ A / y ]_ C )