Description: Change bound variable of a proper substitution into a class. Deduction form. (Contributed by GG, 14-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cbvcsbdavw.1 | |- ( ( ph /\ x = y ) -> B = C ) |
|
| Assertion | cbvcsbdavw | |- ( ph -> [_ A / x ]_ B = [_ A / y ]_ C ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvcsbdavw.1 | |- ( ( ph /\ x = y ) -> B = C ) |
|
| 2 | 1 | eleq2d | |- ( ( ph /\ x = y ) -> ( t e. B <-> t e. C ) ) |
| 3 | 2 | cbvsbcdavw | |- ( ph -> ( [. A / x ]. t e. B <-> [. A / y ]. t e. C ) ) |
| 4 | 3 | abbidv | |- ( ph -> { t | [. A / x ]. t e. B } = { t | [. A / y ]. t e. C } ) |
| 5 | df-csb | |- [_ A / x ]_ B = { t | [. A / x ]. t e. B } |
|
| 6 | df-csb | |- [_ A / y ]_ C = { t | [. A / y ]. t e. C } |
|
| 7 | 4 5 6 | 3eqtr4g | |- ( ph -> [_ A / x ]_ B = [_ A / y ]_ C ) |