Description: Change bound variable of a proper substitution into a class. Deduction form. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cbvcsbdavw.1 | |- ( ( ph /\ x = y ) -> B = C ) |
|
Assertion | cbvcsbdavw | |- ( ph -> [_ A / x ]_ B = [_ A / y ]_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvcsbdavw.1 | |- ( ( ph /\ x = y ) -> B = C ) |
|
2 | 1 | eleq2d | |- ( ( ph /\ x = y ) -> ( t e. B <-> t e. C ) ) |
3 | 2 | cbvsbcdavw | |- ( ph -> ( [. A / x ]. t e. B <-> [. A / y ]. t e. C ) ) |
4 | 3 | abbidv | |- ( ph -> { t | [. A / x ]. t e. B } = { t | [. A / y ]. t e. C } ) |
5 | df-csb | |- [_ A / x ]_ B = { t | [. A / x ]. t e. B } |
|
6 | df-csb | |- [_ A / y ]_ C = { t | [. A / y ]. t e. C } |
|
7 | 4 5 6 | 3eqtr4g | |- ( ph -> [_ A / x ]_ B = [_ A / y ]_ C ) |