Metamath Proof Explorer


Theorem cbvcsbdavw2

Description: Change bound variable of a proper substitution into a class. General version of cbvcsbdavw . Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvcsbdavw2.1
|- ( ph -> A = B )
cbvcsbdavw2.2
|- ( ( ph /\ x = y ) -> C = D )
Assertion cbvcsbdavw2
|- ( ph -> [_ A / x ]_ C = [_ B / y ]_ D )

Proof

Step Hyp Ref Expression
1 cbvcsbdavw2.1
 |-  ( ph -> A = B )
2 cbvcsbdavw2.2
 |-  ( ( ph /\ x = y ) -> C = D )
3 2 eleq2d
 |-  ( ( ph /\ x = y ) -> ( t e. C <-> t e. D ) )
4 1 3 cbvsbcdavw2
 |-  ( ph -> ( [. A / x ]. t e. C <-> [. B / y ]. t e. D ) )
5 4 abbidv
 |-  ( ph -> { t | [. A / x ]. t e. C } = { t | [. B / y ]. t e. D } )
6 df-csb
 |-  [_ A / x ]_ C = { t | [. A / x ]. t e. C }
7 df-csb
 |-  [_ B / y ]_ D = { t | [. B / y ]. t e. D }
8 5 6 7 3eqtr4g
 |-  ( ph -> [_ A / x ]_ C = [_ B / y ]_ D )