Description: Change bound variable of a proper substitution into a class. General version of cbvcsbdavw . Deduction form. (Contributed by GG, 14-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvcsbdavw2.1 | |- ( ph -> A = B ) |
|
| cbvcsbdavw2.2 | |- ( ( ph /\ x = y ) -> C = D ) |
||
| Assertion | cbvcsbdavw2 | |- ( ph -> [_ A / x ]_ C = [_ B / y ]_ D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvcsbdavw2.1 | |- ( ph -> A = B ) |
|
| 2 | cbvcsbdavw2.2 | |- ( ( ph /\ x = y ) -> C = D ) |
|
| 3 | 2 | eleq2d | |- ( ( ph /\ x = y ) -> ( t e. C <-> t e. D ) ) |
| 4 | 1 3 | cbvsbcdavw2 | |- ( ph -> ( [. A / x ]. t e. C <-> [. B / y ]. t e. D ) ) |
| 5 | 4 | abbidv | |- ( ph -> { t | [. A / x ]. t e. C } = { t | [. B / y ]. t e. D } ) |
| 6 | df-csb | |- [_ A / x ]_ C = { t | [. A / x ]. t e. C } |
|
| 7 | df-csb | |- [_ B / y ]_ D = { t | [. B / y ]. t e. D } |
|
| 8 | 5 6 7 | 3eqtr4g | |- ( ph -> [_ A / x ]_ C = [_ B / y ]_ D ) |