Step |
Hyp |
Ref |
Expression |
1 |
|
cbvrabdavw.1 |
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) ) |
2 |
|
eleq1w |
|- ( x = y -> ( x e. A <-> y e. A ) ) |
3 |
2
|
adantl |
|- ( ( ph /\ x = y ) -> ( x e. A <-> y e. A ) ) |
4 |
3 1
|
anbi12d |
|- ( ( ph /\ x = y ) -> ( ( x e. A /\ ps ) <-> ( y e. A /\ ch ) ) ) |
5 |
4
|
cbvabdavw |
|- ( ph -> { x | ( x e. A /\ ps ) } = { y | ( y e. A /\ ch ) } ) |
6 |
|
df-rab |
|- { x e. A | ps } = { x | ( x e. A /\ ps ) } |
7 |
|
df-rab |
|- { y e. A | ch } = { y | ( y e. A /\ ch ) } |
8 |
5 6 7
|
3eqtr4g |
|- ( ph -> { x e. A | ps } = { y e. A | ch } ) |