Metamath Proof Explorer


Theorem cbvrabdavw

Description: Change bound variable in restricted class abstractions. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvrabdavw.1
|- ( ( ph /\ x = y ) -> ( ps <-> ch ) )
Assertion cbvrabdavw
|- ( ph -> { x e. A | ps } = { y e. A | ch } )

Proof

Step Hyp Ref Expression
1 cbvrabdavw.1
 |-  ( ( ph /\ x = y ) -> ( ps <-> ch ) )
2 eleq1w
 |-  ( x = y -> ( x e. A <-> y e. A ) )
3 2 adantl
 |-  ( ( ph /\ x = y ) -> ( x e. A <-> y e. A ) )
4 3 1 anbi12d
 |-  ( ( ph /\ x = y ) -> ( ( x e. A /\ ps ) <-> ( y e. A /\ ch ) ) )
5 4 cbvabdavw
 |-  ( ph -> { x | ( x e. A /\ ps ) } = { y | ( y e. A /\ ch ) } )
6 df-rab
 |-  { x e. A | ps } = { x | ( x e. A /\ ps ) }
7 df-rab
 |-  { y e. A | ch } = { y | ( y e. A /\ ch ) }
8 5 6 7 3eqtr4g
 |-  ( ph -> { x e. A | ps } = { y e. A | ch } )