Description: Change bound variable in restricted class abstractions. Deduction form. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cbvrabdavw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
Assertion | cbvrabdavw | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑦 ∈ 𝐴 ∣ 𝜒 } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvrabdavw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝜓 ↔ 𝜒 ) ) | |
2 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
3 | 2 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
4 | 3 1 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝜒 ) ) ) |
5 | 4 | cbvabdavw | ⊢ ( 𝜑 → { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜒 ) } ) |
6 | df-rab | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } | |
7 | df-rab | ⊢ { 𝑦 ∈ 𝐴 ∣ 𝜒 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐴 ∧ 𝜒 ) } | |
8 | 5 6 7 | 3eqtr4g | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑦 ∈ 𝐴 ∣ 𝜒 } ) |