Metamath Proof Explorer


Theorem cbvrabdavw

Description: Change bound variable in restricted class abstractions. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvrabdavw.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
Assertion cbvrabdavw ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑦𝐴𝜒 } )

Proof

Step Hyp Ref Expression
1 cbvrabdavw.1 ( ( 𝜑𝑥 = 𝑦 ) → ( 𝜓𝜒 ) )
2 eleq1w ( 𝑥 = 𝑦 → ( 𝑥𝐴𝑦𝐴 ) )
3 2 adantl ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑥𝐴𝑦𝐴 ) )
4 3 1 anbi12d ( ( 𝜑𝑥 = 𝑦 ) → ( ( 𝑥𝐴𝜓 ) ↔ ( 𝑦𝐴𝜒 ) ) )
5 4 cbvabdavw ( 𝜑 → { 𝑥 ∣ ( 𝑥𝐴𝜓 ) } = { 𝑦 ∣ ( 𝑦𝐴𝜒 ) } )
6 df-rab { 𝑥𝐴𝜓 } = { 𝑥 ∣ ( 𝑥𝐴𝜓 ) }
7 df-rab { 𝑦𝐴𝜒 } = { 𝑦 ∣ ( 𝑦𝐴𝜒 ) }
8 5 6 7 3eqtr4g ( 𝜑 → { 𝑥𝐴𝜓 } = { 𝑦𝐴𝜒 } )