Description: Change bound variable in indexed unions. Deduction form. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cbviundavw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐵 = 𝐶 ) | |
Assertion | cbviundavw | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviundavw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐵 = 𝐶 ) | |
2 | 1 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑡 ∈ 𝐵 ↔ 𝑡 ∈ 𝐶 ) ) |
3 | 2 | cbvrexdva | ⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 ↔ ∃ 𝑦 ∈ 𝐴 𝑡 ∈ 𝐶 ) ) |
4 | 3 | abbidv | ⊢ ( 𝜑 → { 𝑡 ∣ ∃ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 } = { 𝑡 ∣ ∃ 𝑦 ∈ 𝐴 𝑡 ∈ 𝐶 } ) |
5 | df-iun | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = { 𝑡 ∣ ∃ 𝑥 ∈ 𝐴 𝑡 ∈ 𝐵 } | |
6 | df-iun | ⊢ ∪ 𝑦 ∈ 𝐴 𝐶 = { 𝑡 ∣ ∃ 𝑦 ∈ 𝐴 𝑡 ∈ 𝐶 } | |
7 | 4 5 6 | 3eqtr4g | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 ) |