Metamath Proof Explorer


Theorem cbviindavw

Description: Change bound variable in indexed intersections. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbviindavw.1 ( ( 𝜑𝑥 = 𝑦 ) → 𝐵 = 𝐶 )
Assertion cbviindavw ( 𝜑 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 cbviindavw.1 ( ( 𝜑𝑥 = 𝑦 ) → 𝐵 = 𝐶 )
2 1 eleq2d ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑡𝐵𝑡𝐶 ) )
3 2 cbvraldva ( 𝜑 → ( ∀ 𝑥𝐴 𝑡𝐵 ↔ ∀ 𝑦𝐴 𝑡𝐶 ) )
4 3 abbidv ( 𝜑 → { 𝑡 ∣ ∀ 𝑥𝐴 𝑡𝐵 } = { 𝑡 ∣ ∀ 𝑦𝐴 𝑡𝐶 } )
5 df-iin 𝑥𝐴 𝐵 = { 𝑡 ∣ ∀ 𝑥𝐴 𝑡𝐵 }
6 df-iin 𝑦𝐴 𝐶 = { 𝑡 ∣ ∀ 𝑦𝐴 𝑡𝐶 }
7 4 5 6 3eqtr4g ( 𝜑 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶 )