Metamath Proof Explorer


Theorem cbviindavw

Description: Change bound variable in indexed intersections. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbviindavw.1 φ x = y B = C
Assertion cbviindavw φ x A B = y A C

Proof

Step Hyp Ref Expression
1 cbviindavw.1 φ x = y B = C
2 1 eleq2d φ x = y t B t C
3 2 cbvraldva φ x A t B y A t C
4 3 abbidv φ t | x A t B = t | y A t C
5 df-iin x A B = t | x A t B
6 df-iin y A C = t | y A t C
7 4 5 6 3eqtr4g φ x A B = y A C