Metamath Proof Explorer


Theorem cbvopab1davw

Description: Change the first bound variable in an ordered-pair class abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvopab1davw.1 φ x = z ψ χ
Assertion cbvopab1davw φ x y | ψ = z y | χ

Proof

Step Hyp Ref Expression
1 cbvopab1davw.1 φ x = z ψ χ
2 opeq1 x = z x y = z y
3 2 adantl φ x = z x y = z y
4 3 eqeq2d φ x = z t = x y t = z y
5 4 1 anbi12d φ x = z t = x y ψ t = z y χ
6 5 exbidv φ x = z y t = x y ψ y t = z y χ
7 6 cbvexdvaw φ x y t = x y ψ z y t = z y χ
8 7 abbidv φ t | x y t = x y ψ = t | z y t = z y χ
9 df-opab x y | ψ = t | x y t = x y ψ
10 df-opab z y | χ = t | z y t = z y χ
11 8 9 10 3eqtr4g φ x y | ψ = z y | χ