Metamath Proof Explorer


Theorem cbvopab1davw

Description: Change the first bound variable in an ordered-pair class abstraction. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvopab1davw.1
|- ( ( ph /\ x = z ) -> ( ps <-> ch ) )
Assertion cbvopab1davw
|- ( ph -> { <. x , y >. | ps } = { <. z , y >. | ch } )

Proof

Step Hyp Ref Expression
1 cbvopab1davw.1
 |-  ( ( ph /\ x = z ) -> ( ps <-> ch ) )
2 opeq1
 |-  ( x = z -> <. x , y >. = <. z , y >. )
3 2 adantl
 |-  ( ( ph /\ x = z ) -> <. x , y >. = <. z , y >. )
4 3 eqeq2d
 |-  ( ( ph /\ x = z ) -> ( t = <. x , y >. <-> t = <. z , y >. ) )
5 4 1 anbi12d
 |-  ( ( ph /\ x = z ) -> ( ( t = <. x , y >. /\ ps ) <-> ( t = <. z , y >. /\ ch ) ) )
6 5 exbidv
 |-  ( ( ph /\ x = z ) -> ( E. y ( t = <. x , y >. /\ ps ) <-> E. y ( t = <. z , y >. /\ ch ) ) )
7 6 cbvexdvaw
 |-  ( ph -> ( E. x E. y ( t = <. x , y >. /\ ps ) <-> E. z E. y ( t = <. z , y >. /\ ch ) ) )
8 7 abbidv
 |-  ( ph -> { t | E. x E. y ( t = <. x , y >. /\ ps ) } = { t | E. z E. y ( t = <. z , y >. /\ ch ) } )
9 df-opab
 |-  { <. x , y >. | ps } = { t | E. x E. y ( t = <. x , y >. /\ ps ) }
10 df-opab
 |-  { <. z , y >. | ch } = { t | E. z E. y ( t = <. z , y >. /\ ch ) }
11 8 9 10 3eqtr4g
 |-  ( ph -> { <. x , y >. | ps } = { <. z , y >. | ch } )