Step |
Hyp |
Ref |
Expression |
1 |
|
cbvopab1davw.1 |
|- ( ( ph /\ x = z ) -> ( ps <-> ch ) ) |
2 |
|
opeq1 |
|- ( x = z -> <. x , y >. = <. z , y >. ) |
3 |
2
|
adantl |
|- ( ( ph /\ x = z ) -> <. x , y >. = <. z , y >. ) |
4 |
3
|
eqeq2d |
|- ( ( ph /\ x = z ) -> ( t = <. x , y >. <-> t = <. z , y >. ) ) |
5 |
4 1
|
anbi12d |
|- ( ( ph /\ x = z ) -> ( ( t = <. x , y >. /\ ps ) <-> ( t = <. z , y >. /\ ch ) ) ) |
6 |
5
|
exbidv |
|- ( ( ph /\ x = z ) -> ( E. y ( t = <. x , y >. /\ ps ) <-> E. y ( t = <. z , y >. /\ ch ) ) ) |
7 |
6
|
cbvexdvaw |
|- ( ph -> ( E. x E. y ( t = <. x , y >. /\ ps ) <-> E. z E. y ( t = <. z , y >. /\ ch ) ) ) |
8 |
7
|
abbidv |
|- ( ph -> { t | E. x E. y ( t = <. x , y >. /\ ps ) } = { t | E. z E. y ( t = <. z , y >. /\ ch ) } ) |
9 |
|
df-opab |
|- { <. x , y >. | ps } = { t | E. x E. y ( t = <. x , y >. /\ ps ) } |
10 |
|
df-opab |
|- { <. z , y >. | ch } = { t | E. z E. y ( t = <. z , y >. /\ ch ) } |
11 |
8 9 10
|
3eqtr4g |
|- ( ph -> { <. x , y >. | ps } = { <. z , y >. | ch } ) |