Description: Change bound variable in indexed unions. Deduction form. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cbviundavw.1 | |- ( ( ph /\ x = y ) -> B = C ) |
|
Assertion | cbviundavw | |- ( ph -> U_ x e. A B = U_ y e. A C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviundavw.1 | |- ( ( ph /\ x = y ) -> B = C ) |
|
2 | 1 | eleq2d | |- ( ( ph /\ x = y ) -> ( t e. B <-> t e. C ) ) |
3 | 2 | cbvrexdva | |- ( ph -> ( E. x e. A t e. B <-> E. y e. A t e. C ) ) |
4 | 3 | abbidv | |- ( ph -> { t | E. x e. A t e. B } = { t | E. y e. A t e. C } ) |
5 | df-iun | |- U_ x e. A B = { t | E. x e. A t e. B } |
|
6 | df-iun | |- U_ y e. A C = { t | E. y e. A t e. C } |
|
7 | 4 5 6 | 3eqtr4g | |- ( ph -> U_ x e. A B = U_ y e. A C ) |