Metamath Proof Explorer


Theorem cbviundavw

Description: Change bound variable in indexed unions. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbviundavw.1
|- ( ( ph /\ x = y ) -> B = C )
Assertion cbviundavw
|- ( ph -> U_ x e. A B = U_ y e. A C )

Proof

Step Hyp Ref Expression
1 cbviundavw.1
 |-  ( ( ph /\ x = y ) -> B = C )
2 1 eleq2d
 |-  ( ( ph /\ x = y ) -> ( t e. B <-> t e. C ) )
3 2 cbvrexdva
 |-  ( ph -> ( E. x e. A t e. B <-> E. y e. A t e. C ) )
4 3 abbidv
 |-  ( ph -> { t | E. x e. A t e. B } = { t | E. y e. A t e. C } )
5 df-iun
 |-  U_ x e. A B = { t | E. x e. A t e. B }
6 df-iun
 |-  U_ y e. A C = { t | E. y e. A t e. C }
7 4 5 6 3eqtr4g
 |-  ( ph -> U_ x e. A B = U_ y e. A C )