Metamath Proof Explorer


Theorem cbvcsbdavw2

Description: Change bound variable of a proper substitution into a class. General version of cbvcsbdavw . Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypotheses cbvcsbdavw2.1 ( 𝜑𝐴 = 𝐵 )
cbvcsbdavw2.2 ( ( 𝜑𝑥 = 𝑦 ) → 𝐶 = 𝐷 )
Assertion cbvcsbdavw2 ( 𝜑 𝐴 / 𝑥 𝐶 = 𝐵 / 𝑦 𝐷 )

Proof

Step Hyp Ref Expression
1 cbvcsbdavw2.1 ( 𝜑𝐴 = 𝐵 )
2 cbvcsbdavw2.2 ( ( 𝜑𝑥 = 𝑦 ) → 𝐶 = 𝐷 )
3 2 eleq2d ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑡𝐶𝑡𝐷 ) )
4 1 3 cbvsbcdavw2 ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝑡𝐶[ 𝐵 / 𝑦 ] 𝑡𝐷 ) )
5 4 abbidv ( 𝜑 → { 𝑡[ 𝐴 / 𝑥 ] 𝑡𝐶 } = { 𝑡[ 𝐵 / 𝑦 ] 𝑡𝐷 } )
6 df-csb 𝐴 / 𝑥 𝐶 = { 𝑡[ 𝐴 / 𝑥 ] 𝑡𝐶 }
7 df-csb 𝐵 / 𝑦 𝐷 = { 𝑡[ 𝐵 / 𝑦 ] 𝑡𝐷 }
8 5 6 7 3eqtr4g ( 𝜑 𝐴 / 𝑥 𝐶 = 𝐵 / 𝑦 𝐷 )