Metamath Proof Explorer


Theorem cbvcsbdavw

Description: Change bound variable of a proper substitution into a class. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvcsbdavw.1 ( ( 𝜑𝑥 = 𝑦 ) → 𝐵 = 𝐶 )
Assertion cbvcsbdavw ( 𝜑 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑦 𝐶 )

Proof

Step Hyp Ref Expression
1 cbvcsbdavw.1 ( ( 𝜑𝑥 = 𝑦 ) → 𝐵 = 𝐶 )
2 1 eleq2d ( ( 𝜑𝑥 = 𝑦 ) → ( 𝑡𝐵𝑡𝐶 ) )
3 2 cbvsbcdavw ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝑡𝐵[ 𝐴 / 𝑦 ] 𝑡𝐶 ) )
4 3 abbidv ( 𝜑 → { 𝑡[ 𝐴 / 𝑥 ] 𝑡𝐵 } = { 𝑡[ 𝐴 / 𝑦 ] 𝑡𝐶 } )
5 df-csb 𝐴 / 𝑥 𝐵 = { 𝑡[ 𝐴 / 𝑥 ] 𝑡𝐵 }
6 df-csb 𝐴 / 𝑦 𝐶 = { 𝑡[ 𝐴 / 𝑦 ] 𝑡𝐶 }
7 4 5 6 3eqtr4g ( 𝜑 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑦 𝐶 )