Description: Change bound variable of a proper substitution into a class. Deduction form. (Contributed by GG, 14-Aug-2025)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cbvcsbdavw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐵 = 𝐶 ) | |
Assertion | cbvcsbdavw | ⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑦 ⦌ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvcsbdavw.1 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐵 = 𝐶 ) | |
2 | 1 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝑡 ∈ 𝐵 ↔ 𝑡 ∈ 𝐶 ) ) |
3 | 2 | cbvsbcdavw | ⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝑡 ∈ 𝐵 ↔ [ 𝐴 / 𝑦 ] 𝑡 ∈ 𝐶 ) ) |
4 | 3 | abbidv | ⊢ ( 𝜑 → { 𝑡 ∣ [ 𝐴 / 𝑥 ] 𝑡 ∈ 𝐵 } = { 𝑡 ∣ [ 𝐴 / 𝑦 ] 𝑡 ∈ 𝐶 } ) |
5 | df-csb | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑡 ∣ [ 𝐴 / 𝑥 ] 𝑡 ∈ 𝐵 } | |
6 | df-csb | ⊢ ⦋ 𝐴 / 𝑦 ⦌ 𝐶 = { 𝑡 ∣ [ 𝐴 / 𝑦 ] 𝑡 ∈ 𝐶 } | |
7 | 4 5 6 | 3eqtr4g | ⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑦 ⦌ 𝐶 ) |