Metamath Proof Explorer


Theorem cbvabdavw

Description: Change bound variable in class abstractions. Deduction form. (Contributed by GG, 14-Aug-2025)

Ref Expression
Hypothesis cbvabdavw.1 φ x = y ψ χ
Assertion cbvabdavw φ x | ψ = y | χ

Proof

Step Hyp Ref Expression
1 cbvabdavw.1 φ x = y ψ χ
2 1 cbvsbdavw φ t x ψ t y χ
3 df-clab t x | ψ t x ψ
4 df-clab t y | χ t y χ
5 2 3 4 3bitr4g φ t x | ψ t y | χ
6 5 eqrdv φ x | ψ = y | χ