Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemef44.b |
|- B = ( Base ` K ) |
2 |
|
cdlemef44.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemef44.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemef44.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemef44.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemef44.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemef44.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdlemef44.d |
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
9 |
|
cdlemef44.o |
|- O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , I , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) |
10 |
|
cdlemef44.f |
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) ) |
11 |
|
eqid |
|- ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
12 |
|
biid |
|- ( s .<_ ( P .\/ Q ) <-> s .<_ ( P .\/ Q ) ) |
13 |
|
vex |
|- s e. _V |
14 |
8 11
|
cdleme31sc |
|- ( s e. _V -> [_ s / t ]_ D = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) ) |
15 |
13 14
|
ax-mp |
|- [_ s / t ]_ D = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
16 |
12 15
|
ifbieq2i |
|- if ( s .<_ ( P .\/ Q ) , I , [_ s / t ]_ D ) = if ( s .<_ ( P .\/ Q ) , I , ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) ) |
17 |
|
eqid |
|- ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) |
18 |
1 2 3 4 5 6 7 11 16 9 10 17
|
cdlemefr31fv1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( F ` R ) = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) |
19 |
|
simp2rl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R e. A ) |
20 |
8 17
|
cdleme31sc |
|- ( R e. A -> [_ R / t ]_ D = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) |
21 |
19 20
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> [_ R / t ]_ D = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) |
22 |
18 21
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( F ` R ) = [_ R / t ]_ D ) |