Metamath Proof Explorer


Theorem cdlemefr44

Description: Value of f(r) when r is an atom not under pq, using more compact hypotheses. TODO: eliminate and use cdlemefr45 instead? TODO: FIX COMMENT. (Contributed by NM, 31-Mar-2013)

Ref Expression
Hypotheses cdlemef44.b 𝐵 = ( Base ‘ 𝐾 )
cdlemef44.l = ( le ‘ 𝐾 )
cdlemef44.j = ( join ‘ 𝐾 )
cdlemef44.m = ( meet ‘ 𝐾 )
cdlemef44.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemef44.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemef44.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
cdlemef44.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
cdlemef44.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) )
cdlemef44.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
Assertion cdlemefr44 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝐹𝑅 ) = 𝑅 / 𝑡 𝐷 )

Proof

Step Hyp Ref Expression
1 cdlemef44.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemef44.l = ( le ‘ 𝐾 )
3 cdlemef44.j = ( join ‘ 𝐾 )
4 cdlemef44.m = ( meet ‘ 𝐾 )
5 cdlemef44.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemef44.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemef44.u 𝑈 = ( ( 𝑃 𝑄 ) 𝑊 )
8 cdlemef44.d 𝐷 = ( ( 𝑡 𝑈 ) ( 𝑄 ( ( 𝑃 𝑡 ) 𝑊 ) ) )
9 cdlemef44.o 𝑂 = ( 𝑧𝐵𝑠𝐴 ( ( ¬ 𝑠 𝑊 ∧ ( 𝑠 ( 𝑥 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝑠 / 𝑡 𝐷 ) ( 𝑥 𝑊 ) ) ) )
10 cdlemef44.f 𝐹 = ( 𝑥𝐵 ↦ if ( ( 𝑃𝑄 ∧ ¬ 𝑥 𝑊 ) , 𝑂 , 𝑥 ) )
11 eqid ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) ) = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
12 biid ( 𝑠 ( 𝑃 𝑄 ) ↔ 𝑠 ( 𝑃 𝑄 ) )
13 vex 𝑠 ∈ V
14 8 11 cdleme31sc ( 𝑠 ∈ V → 𝑠 / 𝑡 𝐷 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) ) )
15 13 14 ax-mp 𝑠 / 𝑡 𝐷 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
16 12 15 ifbieq2i if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , 𝑠 / 𝑡 𝐷 ) = if ( 𝑠 ( 𝑃 𝑄 ) , 𝐼 , ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) ) )
17 eqid ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )
18 1 2 3 4 5 6 7 11 16 9 10 17 cdlemefr31fv1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝐹𝑅 ) = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) )
19 simp2rl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑅𝐴 )
20 8 17 cdleme31sc ( 𝑅𝐴 𝑅 / 𝑡 𝐷 = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) )
21 19 20 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → 𝑅 / 𝑡 𝐷 = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) )
22 18 21 eqtr4d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑄𝐴 ∧ ¬ 𝑄 𝑊 ) ) ∧ ( 𝑃𝑄 ∧ ( 𝑅𝐴 ∧ ¬ 𝑅 𝑊 ) ) ∧ ¬ 𝑅 ( 𝑃 𝑄 ) ) → ( 𝐹𝑅 ) = 𝑅 / 𝑡 𝐷 )