Metamath Proof Explorer


Theorem cdleme31sc

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 31-Mar-2013)

Ref Expression
Hypotheses cdleme31sc.c 𝐶 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
cdleme31sc.x 𝑋 = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )
Assertion cdleme31sc ( 𝑅𝐴 𝑅 / 𝑠 𝐶 = 𝑋 )

Proof

Step Hyp Ref Expression
1 cdleme31sc.c 𝐶 = ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
2 cdleme31sc.x 𝑋 = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )
3 nfcvd ( 𝑅𝐴 𝑠 ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) )
4 oveq1 ( 𝑠 = 𝑅 → ( 𝑠 𝑈 ) = ( 𝑅 𝑈 ) )
5 oveq2 ( 𝑠 = 𝑅 → ( 𝑃 𝑠 ) = ( 𝑃 𝑅 ) )
6 5 oveq1d ( 𝑠 = 𝑅 → ( ( 𝑃 𝑠 ) 𝑊 ) = ( ( 𝑃 𝑅 ) 𝑊 ) )
7 6 oveq2d ( 𝑠 = 𝑅 → ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) = ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) )
8 4 7 oveq12d ( 𝑠 = 𝑅 → ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) ) = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) )
9 3 8 csbiegf ( 𝑅𝐴 𝑅 / 𝑠 ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) ) = ( ( 𝑅 𝑈 ) ( 𝑄 ( ( 𝑃 𝑅 ) 𝑊 ) ) ) )
10 1 csbeq2i 𝑅 / 𝑠 𝐶 = 𝑅 / 𝑠 ( ( 𝑠 𝑈 ) ( 𝑄 ( ( 𝑃 𝑠 ) 𝑊 ) ) )
11 9 10 2 3eqtr4g ( 𝑅𝐴 𝑅 / 𝑠 𝐶 = 𝑋 )