Metamath Proof Explorer


Theorem cdleme31sc

Description: Part of proof of Lemma E in Crawley p. 113. (Contributed by NM, 31-Mar-2013)

Ref Expression
Hypotheses cdleme31sc.c C = s ˙ U ˙ Q ˙ P ˙ s ˙ W
cdleme31sc.x X = R ˙ U ˙ Q ˙ P ˙ R ˙ W
Assertion cdleme31sc R A R / s C = X

Proof

Step Hyp Ref Expression
1 cdleme31sc.c C = s ˙ U ˙ Q ˙ P ˙ s ˙ W
2 cdleme31sc.x X = R ˙ U ˙ Q ˙ P ˙ R ˙ W
3 nfcvd R A _ s R ˙ U ˙ Q ˙ P ˙ R ˙ W
4 oveq1 s = R s ˙ U = R ˙ U
5 oveq2 s = R P ˙ s = P ˙ R
6 5 oveq1d s = R P ˙ s ˙ W = P ˙ R ˙ W
7 6 oveq2d s = R Q ˙ P ˙ s ˙ W = Q ˙ P ˙ R ˙ W
8 4 7 oveq12d s = R s ˙ U ˙ Q ˙ P ˙ s ˙ W = R ˙ U ˙ Q ˙ P ˙ R ˙ W
9 3 8 csbiegf R A R / s s ˙ U ˙ Q ˙ P ˙ s ˙ W = R ˙ U ˙ Q ˙ P ˙ R ˙ W
10 1 csbeq2i R / s C = R / s s ˙ U ˙ Q ˙ P ˙ s ˙ W
11 9 10 2 3eqtr4g R A R / s C = X