Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Construction of a vector space from a Hilbert lattice
cdleme31sc
Next ⟩
cdleme31sde
Metamath Proof Explorer
Ascii
Unicode
Theorem
cdleme31sc
Description:
Part of proof of Lemma E in
Crawley
p. 113.
(Contributed by
NM
, 31-Mar-2013)
Ref
Expression
Hypotheses
cdleme31sc.c
⊢
C
=
s
∨
˙
U
∧
˙
Q
∨
˙
P
∨
˙
s
∧
˙
W
cdleme31sc.x
⊢
X
=
R
∨
˙
U
∧
˙
Q
∨
˙
P
∨
˙
R
∧
˙
W
Assertion
cdleme31sc
⊢
R
∈
A
→
⦋
R
/
s
⦌
C
=
X
Proof
Step
Hyp
Ref
Expression
1
cdleme31sc.c
⊢
C
=
s
∨
˙
U
∧
˙
Q
∨
˙
P
∨
˙
s
∧
˙
W
2
cdleme31sc.x
⊢
X
=
R
∨
˙
U
∧
˙
Q
∨
˙
P
∨
˙
R
∧
˙
W
3
nfcvd
⊢
R
∈
A
→
Ⅎ
_
s
R
∨
˙
U
∧
˙
Q
∨
˙
P
∨
˙
R
∧
˙
W
4
oveq1
⊢
s
=
R
→
s
∨
˙
U
=
R
∨
˙
U
5
oveq2
⊢
s
=
R
→
P
∨
˙
s
=
P
∨
˙
R
6
5
oveq1d
⊢
s
=
R
→
P
∨
˙
s
∧
˙
W
=
P
∨
˙
R
∧
˙
W
7
6
oveq2d
⊢
s
=
R
→
Q
∨
˙
P
∨
˙
s
∧
˙
W
=
Q
∨
˙
P
∨
˙
R
∧
˙
W
8
4
7
oveq12d
⊢
s
=
R
→
s
∨
˙
U
∧
˙
Q
∨
˙
P
∨
˙
s
∧
˙
W
=
R
∨
˙
U
∧
˙
Q
∨
˙
P
∨
˙
R
∧
˙
W
9
3
8
csbiegf
⊢
R
∈
A
→
⦋
R
/
s
⦌
s
∨
˙
U
∧
˙
Q
∨
˙
P
∨
˙
s
∧
˙
W
=
R
∨
˙
U
∧
˙
Q
∨
˙
P
∨
˙
R
∧
˙
W
10
1
csbeq2i
⊢
⦋
R
/
s
⦌
C
=
⦋
R
/
s
⦌
s
∨
˙
U
∧
˙
Q
∨
˙
P
∨
˙
s
∧
˙
W
11
9
10
2
3eqtr4g
⊢
R
∈
A
→
⦋
R
/
s
⦌
C
=
X