Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemef44.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
cdlemef44.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
cdlemef44.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
cdlemef44.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
cdlemef44.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
cdlemef44.h |
⊢ 𝐻 = ( LHyp ‘ 𝐾 ) |
7 |
|
cdlemef44.u |
⊢ 𝑈 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑊 ) |
8 |
|
cdlemef44.d |
⊢ 𝐷 = ( ( 𝑡 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
9 |
|
cdlemef44.o |
⊢ 𝑂 = ( ℩ 𝑧 ∈ 𝐵 ∀ 𝑠 ∈ 𝐴 ( ( ¬ 𝑠 ≤ 𝑊 ∧ ( 𝑠 ∨ ( 𝑥 ∧ 𝑊 ) ) = 𝑥 ) → 𝑧 = ( if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐼 , ⦋ 𝑠 / 𝑡 ⦌ 𝐷 ) ∨ ( 𝑥 ∧ 𝑊 ) ) ) ) |
10 |
|
cdlemef44.f |
⊢ 𝐹 = ( 𝑥 ∈ 𝐵 ↦ if ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊 ) , 𝑂 , 𝑥 ) ) |
11 |
|
cdlemefs44.e |
⊢ 𝐸 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( 𝐷 ∨ ( ( 𝑠 ∨ 𝑡 ) ∧ 𝑊 ) ) ) |
12 |
|
cdlemefs44.i |
⊢ 𝐼 = ( ℩ 𝑦 ∈ 𝐵 ∀ 𝑡 ∈ 𝐴 ( ( ¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ ( 𝑃 ∨ 𝑄 ) ) → 𝑦 = 𝐸 ) ) |
13 |
|
eqid |
⊢ if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐼 , ⦋ 𝑠 / 𝑡 ⦌ 𝐷 ) = if ( 𝑠 ≤ ( 𝑃 ∨ 𝑄 ) , 𝐼 , ⦋ 𝑠 / 𝑡 ⦌ 𝐷 ) |
14 |
|
eqid |
⊢ ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) = ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
15 |
|
eqid |
⊢ ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) |
16 |
1 2 3 4 5 6 7 8 11 12 13 9 10 14 15
|
cdlemefs31fv1 |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑅 ) = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
17 |
|
simp22l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑅 ∈ 𝐴 ) |
18 |
|
simp23l |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → 𝑆 ∈ 𝐴 ) |
19 |
8 11 14 15
|
cdleme31sde |
⊢ ( ( 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ) → ⦋ 𝑅 / 𝑠 ⦌ ⦋ 𝑆 / 𝑡 ⦌ 𝐸 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
20 |
17 18 19
|
syl2anc |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ⦋ 𝑅 / 𝑠 ⦌ ⦋ 𝑆 / 𝑡 ⦌ 𝐸 = ( ( 𝑃 ∨ 𝑄 ) ∧ ( ( ( 𝑆 ∨ 𝑈 ) ∧ ( 𝑄 ∨ ( ( 𝑃 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ∨ ( ( 𝑅 ∨ 𝑆 ) ∧ 𝑊 ) ) ) ) |
21 |
16 20
|
eqtr4d |
⊢ ( ( ( ( 𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ) ∧ ( 𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊 ) ∧ ( 𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ( 𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊 ) ∧ ( 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊 ) ) ∧ ( 𝑅 ≤ ( 𝑃 ∨ 𝑄 ) ∧ ¬ 𝑆 ≤ ( 𝑃 ∨ 𝑄 ) ) ) → ( 𝐹 ‘ 𝑅 ) = ⦋ 𝑅 / 𝑠 ⦌ ⦋ 𝑆 / 𝑡 ⦌ 𝐸 ) |