Metamath Proof Explorer


Theorem cdlemefs44

Description: Value of f_s(r) when r is an atom under pq and s is any atom not under pq, using more compact hypotheses. TODO: eliminate and use cdlemefs45 instead TODO: FIX COMMENT. (Contributed by NM, 31-Mar-2013)

Ref Expression
Hypotheses cdlemef44.b B=BaseK
cdlemef44.l ˙=K
cdlemef44.j ˙=joinK
cdlemef44.m ˙=meetK
cdlemef44.a A=AtomsK
cdlemef44.h H=LHypK
cdlemef44.u U=P˙Q˙W
cdlemef44.d D=t˙U˙Q˙P˙t˙W
cdlemef44.o O=ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QIs/tD˙x˙W
cdlemef44.f F=xBifPQ¬x˙WOx
cdlemefs44.e E=P˙Q˙D˙s˙t˙W
cdlemefs44.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
Assertion cdlemefs44 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFR=R/sS/tE

Proof

Step Hyp Ref Expression
1 cdlemef44.b B=BaseK
2 cdlemef44.l ˙=K
3 cdlemef44.j ˙=joinK
4 cdlemef44.m ˙=meetK
5 cdlemef44.a A=AtomsK
6 cdlemef44.h H=LHypK
7 cdlemef44.u U=P˙Q˙W
8 cdlemef44.d D=t˙U˙Q˙P˙t˙W
9 cdlemef44.o O=ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QIs/tD˙x˙W
10 cdlemef44.f F=xBifPQ¬x˙WOx
11 cdlemefs44.e E=P˙Q˙D˙s˙t˙W
12 cdlemefs44.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
13 eqid ifs˙P˙QIs/tD=ifs˙P˙QIs/tD
14 eqid S˙U˙Q˙P˙S˙W=S˙U˙Q˙P˙S˙W
15 eqid P˙Q˙S˙U˙Q˙P˙S˙W˙R˙S˙W=P˙Q˙S˙U˙Q˙P˙S˙W˙R˙S˙W
16 1 2 3 4 5 6 7 8 11 12 13 9 10 14 15 cdlemefs31fv1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFR=P˙Q˙S˙U˙Q˙P˙S˙W˙R˙S˙W
17 simp22l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QRA
18 simp23l KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QSA
19 8 11 14 15 cdleme31sde RASAR/sS/tE=P˙Q˙S˙U˙Q˙P˙S˙W˙R˙S˙W
20 17 18 19 syl2anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QR/sS/tE=P˙Q˙S˙U˙Q˙P˙S˙W˙R˙S˙W
21 16 20 eqtr4d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WSA¬S˙WR˙P˙Q¬S˙P˙QFR=R/sS/tE