Metamath Proof Explorer


Theorem cdlemefs31fv1

Description: Value of ( FR ) when R .<_ ( P .\/ Q ) . TODO This may be useful for shortening others that now use riotasv 3d . TODO: FIX COMMENT. ***END OF VALUE AT ATOM STUFF TO REPLACE ONES BELOW***

       "cdleme3xsn1aw" decreased using "cdlemefs32sn1aw"
       "cdleme32sn1aw" decreased from 3302 to 36 using "cdlemefs32sn1aw".
       "cdleme32sn2aw" decreased from 1687 to 26 using "cdlemefr32sn2aw".
       "cdleme32snaw" decreased from 376 to 375 using "cdlemefs32sn1aw".
       "cdleme32snaw" decreased from 375 to 368 using "cdlemefr32sn2aw".
       "cdleme35sn3a" decreased from 547 to 523 using "cdleme43frv1sn".
       
(Contributed by NM, 27-Mar-2013)

Ref Expression
Hypotheses cdlemefs32.b B = Base K
cdlemefs32.l ˙ = K
cdlemefs32.j ˙ = join K
cdlemefs32.m ˙ = meet K
cdlemefs32.a A = Atoms K
cdlemefs32.h H = LHyp K
cdlemefs32.u U = P ˙ Q ˙ W
cdlemefs32.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
cdlemefs32.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
cdlemefs32.i I = ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E
cdlemefs32.n N = if s ˙ P ˙ Q I C
cdleme29fs.o O = ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W
cdleme29fs.f F = x B if P Q ¬ x ˙ W O x
cdleme43fsv.y Y = S ˙ U ˙ Q ˙ P ˙ S ˙ W
cdleme43fsv.z Z = P ˙ Q ˙ Y ˙ R ˙ S ˙ W
Assertion cdlemefs31fv1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q F R = Z

Proof

Step Hyp Ref Expression
1 cdlemefs32.b B = Base K
2 cdlemefs32.l ˙ = K
3 cdlemefs32.j ˙ = join K
4 cdlemefs32.m ˙ = meet K
5 cdlemefs32.a A = Atoms K
6 cdlemefs32.h H = LHyp K
7 cdlemefs32.u U = P ˙ Q ˙ W
8 cdlemefs32.d D = t ˙ U ˙ Q ˙ P ˙ t ˙ W
9 cdlemefs32.e E = P ˙ Q ˙ D ˙ s ˙ t ˙ W
10 cdlemefs32.i I = ι y B | t A ¬ t ˙ W ¬ t ˙ P ˙ Q y = E
11 cdlemefs32.n N = if s ˙ P ˙ Q I C
12 cdleme29fs.o O = ι z B | s A ¬ s ˙ W s ˙ x ˙ W = x z = N ˙ x ˙ W
13 cdleme29fs.f F = x B if P Q ¬ x ˙ W O x
14 cdleme43fsv.y Y = S ˙ U ˙ Q ˙ P ˙ S ˙ W
15 cdleme43fsv.z Z = P ˙ Q ˙ Y ˙ R ˙ S ˙ W
16 simp1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
17 simp21 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q P Q
18 simp22 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R A ¬ R ˙ W
19 simp3l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R ˙ P ˙ Q
20 1 2 3 4 5 6 7 8 9 10 11 12 13 cdlemefs32fva1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W R ˙ P ˙ Q F R = R / s N
21 16 17 18 19 20 syl121anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q F R = R / s N
22 1 2 3 4 5 6 7 8 9 10 11 14 15 cdleme43fsv1sn K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q R / s N = Z
23 21 22 eqtrd K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W P Q R A ¬ R ˙ W S A ¬ S ˙ W R ˙ P ˙ Q ¬ S ˙ P ˙ Q F R = Z