Metamath Proof Explorer


Theorem cdlemg2fv

Description: Value of a translation in terms of an associated atom. cdleme48fvg with simpler hypotheses. TODO: Use ltrnj to vastly simplify. (Contributed by NM, 23-Apr-2013)

Ref Expression
Hypotheses cdlemg2inv.h
|- H = ( LHyp ` K )
cdlemg2inv.t
|- T = ( ( LTrn ` K ) ` W )
cdlemg2j.l
|- .<_ = ( le ` K )
cdlemg2j.j
|- .\/ = ( join ` K )
cdlemg2j.a
|- A = ( Atoms ` K )
cdlemg2j.m
|- ./\ = ( meet ` K )
cdlemg2j.b
|- B = ( Base ` K )
Assertion cdlemg2fv
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( F ` X ) = ( ( F ` P ) .\/ ( X ./\ W ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg2inv.h
 |-  H = ( LHyp ` K )
2 cdlemg2inv.t
 |-  T = ( ( LTrn ` K ) ` W )
3 cdlemg2j.l
 |-  .<_ = ( le ` K )
4 cdlemg2j.j
 |-  .\/ = ( join ` K )
5 cdlemg2j.a
 |-  A = ( Atoms ` K )
6 cdlemg2j.m
 |-  ./\ = ( meet ` K )
7 cdlemg2j.b
 |-  B = ( Base ` K )
8 eqid
 |-  ( ( p .\/ q ) ./\ W ) = ( ( p .\/ q ) ./\ W )
9 eqid
 |-  ( ( t .\/ ( ( p .\/ q ) ./\ W ) ) ./\ ( q .\/ ( ( p .\/ t ) ./\ W ) ) ) = ( ( t .\/ ( ( p .\/ q ) ./\ W ) ) ./\ ( q .\/ ( ( p .\/ t ) ./\ W ) ) )
10 eqid
 |-  ( ( p .\/ q ) ./\ ( ( ( t .\/ ( ( p .\/ q ) ./\ W ) ) ./\ ( q .\/ ( ( p .\/ t ) ./\ W ) ) ) .\/ ( ( s .\/ t ) ./\ W ) ) ) = ( ( p .\/ q ) ./\ ( ( ( t .\/ ( ( p .\/ q ) ./\ W ) ) ./\ ( q .\/ ( ( p .\/ t ) ./\ W ) ) ) .\/ ( ( s .\/ t ) ./\ W ) ) )
11 eqid
 |-  ( x e. B |-> if ( ( p =/= q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( p .\/ q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( p .\/ q ) ) -> y = ( ( p .\/ q ) ./\ ( ( ( t .\/ ( ( p .\/ q ) ./\ W ) ) ./\ ( q .\/ ( ( p .\/ t ) ./\ W ) ) ) .\/ ( ( s .\/ t ) ./\ W ) ) ) ) ) , [_ s / t ]_ ( ( t .\/ ( ( p .\/ q ) ./\ W ) ) ./\ ( q .\/ ( ( p .\/ t ) ./\ W ) ) ) ) .\/ ( x ./\ W ) ) ) ) , x ) ) = ( x e. B |-> if ( ( p =/= q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( p .\/ q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( p .\/ q ) ) -> y = ( ( p .\/ q ) ./\ ( ( ( t .\/ ( ( p .\/ q ) ./\ W ) ) ./\ ( q .\/ ( ( p .\/ t ) ./\ W ) ) ) .\/ ( ( s .\/ t ) ./\ W ) ) ) ) ) , [_ s / t ]_ ( ( t .\/ ( ( p .\/ q ) ./\ W ) ) ./\ ( q .\/ ( ( p .\/ t ) ./\ W ) ) ) ) .\/ ( x ./\ W ) ) ) ) , x ) )
12 7 3 4 6 5 1 2 8 9 10 11 cdlemg2fvlem
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( X e. B /\ -. X .<_ W ) ) /\ ( F e. T /\ ( P .\/ ( X ./\ W ) ) = X ) ) -> ( F ` X ) = ( ( F ` P ) .\/ ( X ./\ W ) ) )