Metamath Proof Explorer


Theorem cdlemg2jOLDN

Description: TODO: Replace this with ltrnj . (Contributed by NM, 22-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg2inv.h
|- H = ( LHyp ` K )
cdlemg2inv.t
|- T = ( ( LTrn ` K ) ` W )
cdlemg2j.l
|- .<_ = ( le ` K )
cdlemg2j.j
|- .\/ = ( join ` K )
cdlemg2j.a
|- A = ( Atoms ` K )
Assertion cdlemg2jOLDN
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( F ` ( P .\/ Q ) ) = ( ( F ` P ) .\/ ( F ` Q ) ) )

Proof

Step Hyp Ref Expression
1 cdlemg2inv.h
 |-  H = ( LHyp ` K )
2 cdlemg2inv.t
 |-  T = ( ( LTrn ` K ) ` W )
3 cdlemg2j.l
 |-  .<_ = ( le ` K )
4 cdlemg2j.j
 |-  .\/ = ( join ` K )
5 cdlemg2j.a
 |-  A = ( Atoms ` K )
6 eqid
 |-  ( Base ` K ) = ( Base ` K )
7 eqid
 |-  ( meet ` K ) = ( meet ` K )
8 eqid
 |-  ( ( p .\/ q ) ( meet ` K ) W ) = ( ( p .\/ q ) ( meet ` K ) W )
9 eqid
 |-  ( ( t .\/ ( ( p .\/ q ) ( meet ` K ) W ) ) ( meet ` K ) ( q .\/ ( ( p .\/ t ) ( meet ` K ) W ) ) ) = ( ( t .\/ ( ( p .\/ q ) ( meet ` K ) W ) ) ( meet ` K ) ( q .\/ ( ( p .\/ t ) ( meet ` K ) W ) ) )
10 eqid
 |-  ( ( p .\/ q ) ( meet ` K ) ( ( ( t .\/ ( ( p .\/ q ) ( meet ` K ) W ) ) ( meet ` K ) ( q .\/ ( ( p .\/ t ) ( meet ` K ) W ) ) ) .\/ ( ( s .\/ t ) ( meet ` K ) W ) ) ) = ( ( p .\/ q ) ( meet ` K ) ( ( ( t .\/ ( ( p .\/ q ) ( meet ` K ) W ) ) ( meet ` K ) ( q .\/ ( ( p .\/ t ) ( meet ` K ) W ) ) ) .\/ ( ( s .\/ t ) ( meet ` K ) W ) ) )
11 eqid
 |-  ( x e. ( Base ` K ) |-> if ( ( p =/= q /\ -. x .<_ W ) , ( iota_ z e. ( Base ` K ) A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ( meet ` K ) W ) ) = x ) -> z = ( if ( s .<_ ( p .\/ q ) , ( iota_ y e. ( Base ` K ) A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( p .\/ q ) ) -> y = ( ( p .\/ q ) ( meet ` K ) ( ( ( t .\/ ( ( p .\/ q ) ( meet ` K ) W ) ) ( meet ` K ) ( q .\/ ( ( p .\/ t ) ( meet ` K ) W ) ) ) .\/ ( ( s .\/ t ) ( meet ` K ) W ) ) ) ) ) , [_ s / t ]_ ( ( t .\/ ( ( p .\/ q ) ( meet ` K ) W ) ) ( meet ` K ) ( q .\/ ( ( p .\/ t ) ( meet ` K ) W ) ) ) ) .\/ ( x ( meet ` K ) W ) ) ) ) , x ) ) = ( x e. ( Base ` K ) |-> if ( ( p =/= q /\ -. x .<_ W ) , ( iota_ z e. ( Base ` K ) A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ( meet ` K ) W ) ) = x ) -> z = ( if ( s .<_ ( p .\/ q ) , ( iota_ y e. ( Base ` K ) A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( p .\/ q ) ) -> y = ( ( p .\/ q ) ( meet ` K ) ( ( ( t .\/ ( ( p .\/ q ) ( meet ` K ) W ) ) ( meet ` K ) ( q .\/ ( ( p .\/ t ) ( meet ` K ) W ) ) ) .\/ ( ( s .\/ t ) ( meet ` K ) W ) ) ) ) ) , [_ s / t ]_ ( ( t .\/ ( ( p .\/ q ) ( meet ` K ) W ) ) ( meet ` K ) ( q .\/ ( ( p .\/ t ) ( meet ` K ) W ) ) ) ) .\/ ( x ( meet ` K ) W ) ) ) ) , x ) )
12 6 3 4 7 5 1 2 8 9 10 11 cdlemg2jlemOLDN
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ F e. T ) -> ( F ` ( P .\/ Q ) ) = ( ( F ` P ) .\/ ( F ` Q ) ) )