Metamath Proof Explorer


Theorem cdlemg2jOLDN

Description: TODO: Replace this with ltrnj . (Contributed by NM, 22-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg2inv.h H = LHyp K
cdlemg2inv.t T = LTrn K W
cdlemg2j.l ˙ = K
cdlemg2j.j ˙ = join K
cdlemg2j.a A = Atoms K
Assertion cdlemg2jOLDN K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P ˙ Q = F P ˙ F Q

Proof

Step Hyp Ref Expression
1 cdlemg2inv.h H = LHyp K
2 cdlemg2inv.t T = LTrn K W
3 cdlemg2j.l ˙ = K
4 cdlemg2j.j ˙ = join K
5 cdlemg2j.a A = Atoms K
6 eqid Base K = Base K
7 eqid meet K = meet K
8 eqid p ˙ q meet K W = p ˙ q meet K W
9 eqid t ˙ p ˙ q meet K W meet K q ˙ p ˙ t meet K W = t ˙ p ˙ q meet K W meet K q ˙ p ˙ t meet K W
10 eqid p ˙ q meet K t ˙ p ˙ q meet K W meet K q ˙ p ˙ t meet K W ˙ s ˙ t meet K W = p ˙ q meet K t ˙ p ˙ q meet K W meet K q ˙ p ˙ t meet K W ˙ s ˙ t meet K W
11 eqid x Base K if p q ¬ x ˙ W ι z Base K | s A ¬ s ˙ W s ˙ x meet K W = x z = if s ˙ p ˙ q ι y Base K | t A ¬ t ˙ W ¬ t ˙ p ˙ q y = p ˙ q meet K t ˙ p ˙ q meet K W meet K q ˙ p ˙ t meet K W ˙ s ˙ t meet K W s / t t ˙ p ˙ q meet K W meet K q ˙ p ˙ t meet K W ˙ x meet K W x = x Base K if p q ¬ x ˙ W ι z Base K | s A ¬ s ˙ W s ˙ x meet K W = x z = if s ˙ p ˙ q ι y Base K | t A ¬ t ˙ W ¬ t ˙ p ˙ q y = p ˙ q meet K t ˙ p ˙ q meet K W meet K q ˙ p ˙ t meet K W ˙ s ˙ t meet K W s / t t ˙ p ˙ q meet K W meet K q ˙ p ˙ t meet K W ˙ x meet K W x
12 6 3 4 7 5 1 2 8 9 10 11 cdlemg2jlemOLDN K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T F P ˙ Q = F P ˙ F Q