Metamath Proof Explorer


Theorem cdlemg2jlemOLDN

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT. f preserves join: f(r \/ s) = f(r) \/ s, p. 115 10th line from bottom. TODO: Combine with cdlemg2jOLDN ? (Contributed by NM, 22-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemg2.b B=BaseK
cdlemg2.l ˙=K
cdlemg2.j ˙=joinK
cdlemg2.m ˙=meetK
cdlemg2.a A=AtomsK
cdlemg2.h H=LHypK
cdlemg2.t T=LTrnKW
cdlemg2ex.u U=p˙q˙W
cdlemg2ex.d D=t˙U˙q˙p˙t˙W
cdlemg2ex.e E=p˙q˙D˙s˙t˙W
cdlemg2ex.g G=xBifpq¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙p˙qιyB|tA¬t˙W¬t˙p˙qy=Es/tD˙x˙Wx
Assertion cdlemg2jlemOLDN KHLWHPA¬P˙WQA¬Q˙WFTFP˙Q=FP˙FQ

Proof

Step Hyp Ref Expression
1 cdlemg2.b B=BaseK
2 cdlemg2.l ˙=K
3 cdlemg2.j ˙=joinK
4 cdlemg2.m ˙=meetK
5 cdlemg2.a A=AtomsK
6 cdlemg2.h H=LHypK
7 cdlemg2.t T=LTrnKW
8 cdlemg2ex.u U=p˙q˙W
9 cdlemg2ex.d D=t˙U˙q˙p˙t˙W
10 cdlemg2ex.e E=p˙q˙D˙s˙t˙W
11 cdlemg2ex.g G=xBifpq¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙p˙qιyB|tA¬t˙W¬t˙p˙qy=Es/tD˙x˙Wx
12 fveq1 F=GFP˙Q=GP˙Q
13 fveq1 F=GFP=GP
14 fveq1 F=GFQ=GQ
15 13 14 oveq12d F=GFP˙FQ=GP˙GQ
16 12 15 eqeq12d F=GFP˙Q=FP˙FQGP˙Q=GP˙GQ
17 vex sV
18 eqid s˙U˙q˙p˙s˙W=s˙U˙q˙p˙s˙W
19 9 18 cdleme31sc sVs/tD=s˙U˙q˙p˙s˙W
20 17 19 ax-mp s/tD=s˙U˙q˙p˙s˙W
21 eqid ιyB|tA¬t˙W¬t˙p˙qy=E=ιyB|tA¬t˙W¬t˙p˙qy=E
22 eqid ifs˙p˙qιyB|tA¬t˙W¬t˙p˙qy=Es/tD=ifs˙p˙qιyB|tA¬t˙W¬t˙p˙qy=Es/tD
23 eqid ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙p˙qιyB|tA¬t˙W¬t˙p˙qy=Es/tD˙x˙W=ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙p˙qιyB|tA¬t˙W¬t˙p˙qy=Es/tD˙x˙W
24 1 2 3 4 5 6 8 20 9 10 21 22 23 11 cdleme42mgN KHLWHpA¬p˙WqA¬q˙WPA¬P˙WQA¬Q˙WGP˙Q=GP˙GQ
25 1 2 3 4 5 6 7 8 9 10 11 16 24 cdlemg2ce KHLWHFTPA¬P˙WQA¬Q˙WFP˙Q=FP˙FQ
26 25 3com23 KHLWHPA¬P˙WQA¬Q˙WFTFP˙Q=FP˙FQ