| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemk2.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | cdlemk2.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | cdlemk2.j |  |-  .\/ = ( join ` K ) | 
						
							| 4 |  | cdlemk2.m |  |-  ./\ = ( meet ` K ) | 
						
							| 5 |  | cdlemk2.a |  |-  A = ( Atoms ` K ) | 
						
							| 6 |  | cdlemk2.h |  |-  H = ( LHyp ` K ) | 
						
							| 7 |  | cdlemk2.t |  |-  T = ( ( LTrn ` K ) ` W ) | 
						
							| 8 |  | cdlemk2.r |  |-  R = ( ( trL ` K ) ` W ) | 
						
							| 9 |  | cdlemk2.s |  |-  S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) | 
						
							| 10 |  | cdlemk2.q |  |-  Q = ( S ` C ) | 
						
							| 11 |  | cdlemk2.v |  |-  V = ( d e. T |-> ( iota_ k e. T ( k ` P ) = ( ( P .\/ ( R ` d ) ) ./\ ( ( Q ` P ) .\/ ( R ` ( d o. `' C ) ) ) ) ) ) | 
						
							| 12 |  | simp11 |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> K e. HL ) | 
						
							| 13 |  | simp12 |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> W e. H ) | 
						
							| 14 | 12 13 | jca |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( K e. HL /\ W e. H ) ) | 
						
							| 15 |  | simp2l1 |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> F e. T ) | 
						
							| 16 |  | simp2l2 |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> C e. T ) | 
						
							| 17 |  | simp2l3 |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> N e. T ) | 
						
							| 18 |  | simp2rl |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> G e. T ) | 
						
							| 19 | 17 18 | jca |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( N e. T /\ G e. T ) ) | 
						
							| 20 |  | simp33 |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( P e. A /\ -. P .<_ W ) ) | 
						
							| 21 |  | simp13 |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` F ) = ( R ` N ) ) | 
						
							| 22 |  | simp322 |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> F =/= ( _I |` B ) ) | 
						
							| 23 |  | simp323 |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> C =/= ( _I |` B ) ) | 
						
							| 24 |  | simp2rr |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> G =/= ( _I |` B ) ) | 
						
							| 25 | 22 23 24 | 3jca |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( F =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) ) | 
						
							| 26 |  | simp31l |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` C ) =/= ( R ` F ) ) | 
						
							| 27 |  | simp31r |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` G ) =/= ( R ` C ) ) | 
						
							| 28 |  | simp321 |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( R ` G ) =/= ( R ` F ) ) | 
						
							| 29 | 26 27 28 | 3jca |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` G ) =/= ( R ` F ) ) ) | 
						
							| 30 | 1 2 3 4 5 6 7 8 9 10 11 | cdlemk21N |  |-  ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ C e. T ) /\ ( ( N e. T /\ G e. T ) /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F =/= ( _I |` B ) /\ C =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) /\ ( R ` G ) =/= ( R ` F ) ) ) ) -> ( ( S ` G ) ` P ) = ( ( V ` G ) ` P ) ) | 
						
							| 31 | 14 15 16 19 20 21 25 29 30 | syl332anc |  |-  ( ( ( K e. HL /\ W e. H /\ ( R ` F ) = ( R ` N ) ) /\ ( ( F e. T /\ C e. T /\ N e. T ) /\ ( G e. T /\ G =/= ( _I |` B ) ) ) /\ ( ( ( R ` C ) =/= ( R ` F ) /\ ( R ` G ) =/= ( R ` C ) ) /\ ( ( R ` G ) =/= ( R ` F ) /\ F =/= ( _I |` B ) /\ C =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( S ` G ) ` P ) = ( ( V ` G ) ` P ) ) |