Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 3-Jul-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cdlemk1.b | |- B = ( Base ` K ) |
|
| cdlemk1.l | |- .<_ = ( le ` K ) |
||
| cdlemk1.j | |- .\/ = ( join ` K ) |
||
| cdlemk1.m | |- ./\ = ( meet ` K ) |
||
| cdlemk1.a | |- A = ( Atoms ` K ) |
||
| cdlemk1.h | |- H = ( LHyp ` K ) |
||
| cdlemk1.t | |- T = ( ( LTrn ` K ) ` W ) |
||
| cdlemk1.r | |- R = ( ( trL ` K ) ` W ) |
||
| cdlemk1.s | |- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
||
| cdlemk1.o | |- O = ( S ` D ) |
||
| Assertion | cdlemk5auN | |- ( ( ( K e. HL /\ W e. H ) /\ ( D e. T /\ G e. T /\ X e. T ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( ( D ` P ) .\/ ( R ` D ) ) ./\ ( ( D ` P ) .\/ ( R ` ( G o. `' D ) ) ) ) .<_ ( ( X ` P ) .\/ ( R ` ( X o. `' D ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdlemk1.b | |- B = ( Base ` K ) |
|
| 2 | cdlemk1.l | |- .<_ = ( le ` K ) |
|
| 3 | cdlemk1.j | |- .\/ = ( join ` K ) |
|
| 4 | cdlemk1.m | |- ./\ = ( meet ` K ) |
|
| 5 | cdlemk1.a | |- A = ( Atoms ` K ) |
|
| 6 | cdlemk1.h | |- H = ( LHyp ` K ) |
|
| 7 | cdlemk1.t | |- T = ( ( LTrn ` K ) ` W ) |
|
| 8 | cdlemk1.r | |- R = ( ( trL ` K ) ` W ) |
|
| 9 | cdlemk1.s | |- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
|
| 10 | cdlemk1.o | |- O = ( S ` D ) |
|
| 11 | 1 2 3 5 6 7 8 4 | cdlemk5a | |- ( ( ( K e. HL /\ W e. H ) /\ ( D e. T /\ G e. T /\ X e. T ) /\ ( ( R ` G ) =/= ( R ` D ) /\ ( D =/= ( _I |` B ) /\ G =/= ( _I |` B ) ) /\ ( P e. A /\ -. P .<_ W ) ) ) -> ( ( ( D ` P ) .\/ ( R ` D ) ) ./\ ( ( D ` P ) .\/ ( R ` ( G o. `' D ) ) ) ) .<_ ( ( X ` P ) .\/ ( R ` ( X o. `' D ) ) ) ) |