Metamath Proof Explorer


Theorem cdlemk5auN

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 3-Jul-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemk1.b B = Base K
cdlemk1.l ˙ = K
cdlemk1.j ˙ = join K
cdlemk1.m ˙ = meet K
cdlemk1.a A = Atoms K
cdlemk1.h H = LHyp K
cdlemk1.t T = LTrn K W
cdlemk1.r R = trL K W
cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk1.o O = S D
Assertion cdlemk5auN K HL W H D T G T X T R G R D D I B G I B P A ¬ P ˙ W D P ˙ R D ˙ D P ˙ R G D -1 ˙ X P ˙ R X D -1

Proof

Step Hyp Ref Expression
1 cdlemk1.b B = Base K
2 cdlemk1.l ˙ = K
3 cdlemk1.j ˙ = join K
4 cdlemk1.m ˙ = meet K
5 cdlemk1.a A = Atoms K
6 cdlemk1.h H = LHyp K
7 cdlemk1.t T = LTrn K W
8 cdlemk1.r R = trL K W
9 cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk1.o O = S D
11 1 2 3 5 6 7 8 4 cdlemk5a K HL W H D T G T X T R G R D D I B G I B P A ¬ P ˙ W D P ˙ R D ˙ D P ˙ R G D -1 ˙ X P ˙ R X D -1