| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemk1.b |
|
| 2 |
|
cdlemk1.l |
|
| 3 |
|
cdlemk1.j |
|
| 4 |
|
cdlemk1.m |
|
| 5 |
|
cdlemk1.a |
|
| 6 |
|
cdlemk1.h |
|
| 7 |
|
cdlemk1.t |
|
| 8 |
|
cdlemk1.r |
|
| 9 |
|
cdlemk1.s |
|
| 10 |
|
cdlemk1.o |
|
| 11 |
|
simp11l |
|
| 12 |
11
|
hllatd |
|
| 13 |
|
simp22l |
|
| 14 |
|
simp1 |
|
| 15 |
|
simp211 |
|
| 16 |
|
simp22 |
|
| 17 |
|
simp23 |
|
| 18 |
15 16 17
|
3jca |
|
| 19 |
|
simp3l1 |
|
| 20 |
|
simp3l2 |
|
| 21 |
|
simp3r1 |
|
| 22 |
19 20 21
|
3jca |
|
| 23 |
1 2 3 4 5 6 7 8 9 10
|
cdlemkoatnle |
|
| 24 |
23
|
simpld |
|
| 25 |
14 18 22 24
|
syl3anc |
|
| 26 |
1 3 5
|
hlatjcl |
|
| 27 |
11 13 25 26
|
syl3anc |
|
| 28 |
|
simp11 |
|
| 29 |
|
simp212 |
|
| 30 |
2 5 6 7
|
ltrnat |
|
| 31 |
28 29 13 30
|
syl3anc |
|
| 32 |
|
simp13 |
|
| 33 |
|
simp3r2 |
|
| 34 |
5 6 7 8
|
trlcocnvat |
|
| 35 |
28 29 32 33 34
|
syl121anc |
|
| 36 |
1 3 5
|
hlatjcl |
|
| 37 |
11 31 35 36
|
syl3anc |
|
| 38 |
1 4
|
latmcl |
|
| 39 |
12 27 37 38
|
syl3anc |
|
| 40 |
2 5 6 7
|
ltrnat |
|
| 41 |
28 32 13 40
|
syl3anc |
|
| 42 |
1 5 6 7 8
|
trlnidat |
|
| 43 |
28 32 20 42
|
syl3anc |
|
| 44 |
1 3 5
|
hlatjcl |
|
| 45 |
11 41 43 44
|
syl3anc |
|
| 46 |
1 3 5
|
hlatjcl |
|
| 47 |
11 41 35 46
|
syl3anc |
|
| 48 |
1 4
|
latmcl |
|
| 49 |
12 45 47 48
|
syl3anc |
|
| 50 |
|
simp213 |
|
| 51 |
2 5 6 7
|
ltrnat |
|
| 52 |
28 50 13 51
|
syl3anc |
|
| 53 |
|
simp3r3 |
|
| 54 |
5 6 7 8
|
trlcocnvat |
|
| 55 |
28 50 32 53 54
|
syl121anc |
|
| 56 |
1 3 5
|
hlatjcl |
|
| 57 |
11 52 55 56
|
syl3anc |
|
| 58 |
1 2 3 4 5 6 7 8 9 10
|
cdlemk1u |
|
| 59 |
14 18 22 58
|
syl3anc |
|
| 60 |
1 2 4
|
latmlem1 |
|
| 61 |
12 27 45 37 60
|
syl13anc |
|
| 62 |
59 61
|
mpd |
|
| 63 |
|
simp11r |
|
| 64 |
1 2 3 5 6 7 8
|
cdlemk2 |
|
| 65 |
11 63 32 29 16 64
|
syl221anc |
|
| 66 |
65
|
oveq2d |
|
| 67 |
62 66
|
breqtrd |
|
| 68 |
|
simp3l3 |
|
| 69 |
20 68
|
jca |
|
| 70 |
1 2 3 5 6 7 8 4
|
cdlemk5a |
|
| 71 |
11 63 32 29 50 33 69 16 70
|
syl233anc |
|
| 72 |
1 2 12 39 49 57 67 71
|
lattrd |
|