Metamath Proof Explorer


Theorem cdlemk5u

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 4-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b B = Base K
cdlemk1.l ˙ = K
cdlemk1.j ˙ = join K
cdlemk1.m ˙ = meet K
cdlemk1.a A = Atoms K
cdlemk1.h H = LHyp K
cdlemk1.t T = LTrn K W
cdlemk1.r R = trL K W
cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk1.o O = S D
Assertion cdlemk5u K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D P ˙ O P ˙ G P ˙ R G D -1 ˙ X P ˙ R X D -1

Proof

Step Hyp Ref Expression
1 cdlemk1.b B = Base K
2 cdlemk1.l ˙ = K
3 cdlemk1.j ˙ = join K
4 cdlemk1.m ˙ = meet K
5 cdlemk1.a A = Atoms K
6 cdlemk1.h H = LHyp K
7 cdlemk1.t T = LTrn K W
8 cdlemk1.r R = trL K W
9 cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk1.o O = S D
11 simp11l K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D K HL
12 11 hllatd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D K Lat
13 simp22l K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D P A
14 simp1 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D K HL W H F T D T
15 simp211 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D N T
16 simp22 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D P A ¬ P ˙ W
17 simp23 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D R F = R N
18 15 16 17 3jca K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D N T P A ¬ P ˙ W R F = R N
19 simp3l1 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D F I B
20 simp3l2 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D D I B
21 simp3r1 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D R D R F
22 19 20 21 3jca K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D F I B D I B R D R F
23 1 2 3 4 5 6 7 8 9 10 cdlemkoatnle K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F O P A ¬ O P ˙ W
24 23 simpld K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F O P A
25 14 18 22 24 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D O P A
26 1 3 5 hlatjcl K HL P A O P A P ˙ O P B
27 11 13 25 26 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D P ˙ O P B
28 simp11 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D K HL W H
29 simp212 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D G T
30 2 5 6 7 ltrnat K HL W H G T P A G P A
31 28 29 13 30 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D G P A
32 simp13 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D D T
33 simp3r2 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D R G R D
34 5 6 7 8 trlcocnvat K HL W H G T D T R G R D R G D -1 A
35 28 29 32 33 34 syl121anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D R G D -1 A
36 1 3 5 hlatjcl K HL G P A R G D -1 A G P ˙ R G D -1 B
37 11 31 35 36 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D G P ˙ R G D -1 B
38 1 4 latmcl K Lat P ˙ O P B G P ˙ R G D -1 B P ˙ O P ˙ G P ˙ R G D -1 B
39 12 27 37 38 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D P ˙ O P ˙ G P ˙ R G D -1 B
40 2 5 6 7 ltrnat K HL W H D T P A D P A
41 28 32 13 40 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D D P A
42 1 5 6 7 8 trlnidat K HL W H D T D I B R D A
43 28 32 20 42 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D R D A
44 1 3 5 hlatjcl K HL D P A R D A D P ˙ R D B
45 11 41 43 44 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D D P ˙ R D B
46 1 3 5 hlatjcl K HL D P A R G D -1 A D P ˙ R G D -1 B
47 11 41 35 46 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D D P ˙ R G D -1 B
48 1 4 latmcl K Lat D P ˙ R D B D P ˙ R G D -1 B D P ˙ R D ˙ D P ˙ R G D -1 B
49 12 45 47 48 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D D P ˙ R D ˙ D P ˙ R G D -1 B
50 simp213 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D X T
51 2 5 6 7 ltrnat K HL W H X T P A X P A
52 28 50 13 51 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D X P A
53 simp3r3 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D R X R D
54 5 6 7 8 trlcocnvat K HL W H X T D T R X R D R X D -1 A
55 28 50 32 53 54 syl121anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D R X D -1 A
56 1 3 5 hlatjcl K HL X P A R X D -1 A X P ˙ R X D -1 B
57 11 52 55 56 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D X P ˙ R X D -1 B
58 1 2 3 4 5 6 7 8 9 10 cdlemk1u K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F P ˙ O P ˙ D P ˙ R D
59 14 18 22 58 syl3anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D P ˙ O P ˙ D P ˙ R D
60 1 2 4 latmlem1 K Lat P ˙ O P B D P ˙ R D B G P ˙ R G D -1 B P ˙ O P ˙ D P ˙ R D P ˙ O P ˙ G P ˙ R G D -1 ˙ D P ˙ R D ˙ G P ˙ R G D -1
61 12 27 45 37 60 syl13anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D P ˙ O P ˙ D P ˙ R D P ˙ O P ˙ G P ˙ R G D -1 ˙ D P ˙ R D ˙ G P ˙ R G D -1
62 59 61 mpd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D P ˙ O P ˙ G P ˙ R G D -1 ˙ D P ˙ R D ˙ G P ˙ R G D -1
63 simp11r K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D W H
64 1 2 3 5 6 7 8 cdlemk2 K HL W H D T G T P A ¬ P ˙ W G P ˙ R G D -1 = D P ˙ R G D -1
65 11 63 32 29 16 64 syl221anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D G P ˙ R G D -1 = D P ˙ R G D -1
66 65 oveq2d K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D D P ˙ R D ˙ G P ˙ R G D -1 = D P ˙ R D ˙ D P ˙ R G D -1
67 62 66 breqtrd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D P ˙ O P ˙ G P ˙ R G D -1 ˙ D P ˙ R D ˙ D P ˙ R G D -1
68 simp3l3 K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D G I B
69 20 68 jca K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D D I B G I B
70 1 2 3 5 6 7 8 4 cdlemk5a K HL W H D T G T X T R G R D D I B G I B P A ¬ P ˙ W D P ˙ R D ˙ D P ˙ R G D -1 ˙ X P ˙ R X D -1
71 11 63 32 29 50 33 69 16 70 syl233anc K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D D P ˙ R D ˙ D P ˙ R G D -1 ˙ X P ˙ R X D -1
72 1 2 12 39 49 57 67 71 lattrd K HL W H F T D T N T G T X T P A ¬ P ˙ W R F = R N F I B D I B G I B R D R F R G R D R X R D P ˙ O P ˙ G P ˙ R G D -1 ˙ X P ˙ R X D -1