Metamath Proof Explorer


Theorem cdlemk1u

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 3-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b B = Base K
cdlemk1.l ˙ = K
cdlemk1.j ˙ = join K
cdlemk1.m ˙ = meet K
cdlemk1.a A = Atoms K
cdlemk1.h H = LHyp K
cdlemk1.t T = LTrn K W
cdlemk1.r R = trL K W
cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk1.o O = S D
Assertion cdlemk1u K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F P ˙ O P ˙ D P ˙ R D

Proof

Step Hyp Ref Expression
1 cdlemk1.b B = Base K
2 cdlemk1.l ˙ = K
3 cdlemk1.j ˙ = join K
4 cdlemk1.m ˙ = meet K
5 cdlemk1.a A = Atoms K
6 cdlemk1.h H = LHyp K
7 cdlemk1.t T = LTrn K W
8 cdlemk1.r R = trL K W
9 cdlemk1.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
10 cdlemk1.o O = S D
11 simp11l K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F K HL
12 simp22l K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F P A
13 simp11 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F K HL W H
14 simp13 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F D T
15 simp32 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F D I B
16 1 5 6 7 8 trlnidat K HL W H D T D I B R D A
17 13 14 15 16 syl3anc K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F R D A
18 2 3 5 hlatlej1 K HL P A R D A P ˙ P ˙ R D
19 11 12 17 18 syl3anc K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F P ˙ P ˙ R D
20 1 2 3 4 5 6 7 8 9 10 cdlemkole K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F O P ˙ P ˙ R D
21 11 hllatd K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F K Lat
22 1 5 atbase P A P B
23 12 22 syl K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F P B
24 1 2 3 4 5 6 7 8 9 10 cdlemkoatnle K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F O P A ¬ O P ˙ W
25 24 simpld K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F O P A
26 1 5 atbase O P A O P B
27 25 26 syl K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F O P B
28 1 3 5 hlatjcl K HL P A R D A P ˙ R D B
29 11 12 17 28 syl3anc K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F P ˙ R D B
30 1 2 3 latjle12 K Lat P B O P B P ˙ R D B P ˙ P ˙ R D O P ˙ P ˙ R D P ˙ O P ˙ P ˙ R D
31 21 23 27 29 30 syl13anc K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F P ˙ P ˙ R D O P ˙ P ˙ R D P ˙ O P ˙ P ˙ R D
32 19 20 31 mpbi2and K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F P ˙ O P ˙ P ˙ R D
33 simp22 K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F P A ¬ P ˙ W
34 2 3 5 6 7 8 trljat3 K HL W H D T P A ¬ P ˙ W P ˙ R D = D P ˙ R D
35 13 14 33 34 syl3anc K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F P ˙ R D = D P ˙ R D
36 32 35 breqtrd K HL W H F T D T N T P A ¬ P ˙ W R F = R N F I B D I B R D R F P ˙ O P ˙ D P ˙ R D