Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk1.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk1.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk1.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk1.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemk1.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemk1.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemk1.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemk1.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemk1.s |
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
10 |
|
cdlemk1.o |
|- O = ( S ` D ) |
11 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> K e. HL ) |
12 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> P e. A ) |
13 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( K e. HL /\ W e. H ) ) |
14 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> D e. T ) |
15 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> D =/= ( _I |` B ) ) |
16 |
1 5 6 7 8
|
trlnidat |
|- ( ( ( K e. HL /\ W e. H ) /\ D e. T /\ D =/= ( _I |` B ) ) -> ( R ` D ) e. A ) |
17 |
13 14 15 16
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( R ` D ) e. A ) |
18 |
2 3 5
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ ( R ` D ) e. A ) -> P .<_ ( P .\/ ( R ` D ) ) ) |
19 |
11 12 17 18
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> P .<_ ( P .\/ ( R ` D ) ) ) |
20 |
1 2 3 4 5 6 7 8 9 10
|
cdlemkole |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( O ` P ) .<_ ( P .\/ ( R ` D ) ) ) |
21 |
11
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> K e. Lat ) |
22 |
1 5
|
atbase |
|- ( P e. A -> P e. B ) |
23 |
12 22
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> P e. B ) |
24 |
1 2 3 4 5 6 7 8 9 10
|
cdlemkoatnle |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( O ` P ) e. A /\ -. ( O ` P ) .<_ W ) ) |
25 |
24
|
simpld |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( O ` P ) e. A ) |
26 |
1 5
|
atbase |
|- ( ( O ` P ) e. A -> ( O ` P ) e. B ) |
27 |
25 26
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( O ` P ) e. B ) |
28 |
1 3 5
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ ( R ` D ) e. A ) -> ( P .\/ ( R ` D ) ) e. B ) |
29 |
11 12 17 28
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( P .\/ ( R ` D ) ) e. B ) |
30 |
1 2 3
|
latjle12 |
|- ( ( K e. Lat /\ ( P e. B /\ ( O ` P ) e. B /\ ( P .\/ ( R ` D ) ) e. B ) ) -> ( ( P .<_ ( P .\/ ( R ` D ) ) /\ ( O ` P ) .<_ ( P .\/ ( R ` D ) ) ) <-> ( P .\/ ( O ` P ) ) .<_ ( P .\/ ( R ` D ) ) ) ) |
31 |
21 23 27 29 30
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( ( P .<_ ( P .\/ ( R ` D ) ) /\ ( O ` P ) .<_ ( P .\/ ( R ` D ) ) ) <-> ( P .\/ ( O ` P ) ) .<_ ( P .\/ ( R ` D ) ) ) ) |
32 |
19 20 31
|
mpbi2and |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( P .\/ ( O ` P ) ) .<_ ( P .\/ ( R ` D ) ) ) |
33 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
34 |
2 3 5 6 7 8
|
trljat3 |
|- ( ( ( K e. HL /\ W e. H ) /\ D e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` D ) ) = ( ( D ` P ) .\/ ( R ` D ) ) ) |
35 |
13 14 33 34
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( P .\/ ( R ` D ) ) = ( ( D ` P ) .\/ ( R ` D ) ) ) |
36 |
32 35
|
breqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ D e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ D =/= ( _I |` B ) /\ ( R ` D ) =/= ( R ` F ) ) ) -> ( P .\/ ( O ` P ) ) .<_ ( ( D ` P ) .\/ ( R ` D ) ) ) |