Metamath Proof Explorer


Theorem cdlemk1u

Description: Part of proof of Lemma K of Crawley p. 118. (Contributed by NM, 3-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b 𝐵 = ( Base ‘ 𝐾 )
cdlemk1.l = ( le ‘ 𝐾 )
cdlemk1.j = ( join ‘ 𝐾 )
cdlemk1.m = ( meet ‘ 𝐾 )
cdlemk1.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemk1.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemk1.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemk1.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemk1.s 𝑆 = ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) )
cdlemk1.o 𝑂 = ( 𝑆𝐷 )
Assertion cdlemk1u ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑃 ( 𝑂𝑃 ) ) ( ( 𝐷𝑃 ) ( 𝑅𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk1.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemk1.l = ( le ‘ 𝐾 )
3 cdlemk1.j = ( join ‘ 𝐾 )
4 cdlemk1.m = ( meet ‘ 𝐾 )
5 cdlemk1.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemk1.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemk1.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemk1.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemk1.s 𝑆 = ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) )
10 cdlemk1.o 𝑂 = ( 𝑆𝐷 )
11 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → 𝐾 ∈ HL )
12 simp22l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → 𝑃𝐴 )
13 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
14 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → 𝐷𝑇 )
15 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → 𝐷 ≠ ( I ↾ 𝐵 ) )
16 1 5 6 7 8 trlnidat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐷𝑇𝐷 ≠ ( I ↾ 𝐵 ) ) → ( 𝑅𝐷 ) ∈ 𝐴 )
17 13 14 15 16 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑅𝐷 ) ∈ 𝐴 )
18 2 3 5 hlatlej1 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ∧ ( 𝑅𝐷 ) ∈ 𝐴 ) → 𝑃 ( 𝑃 ( 𝑅𝐷 ) ) )
19 11 12 17 18 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → 𝑃 ( 𝑃 ( 𝑅𝐷 ) ) )
20 1 2 3 4 5 6 7 8 9 10 cdlemkole ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑂𝑃 ) ( 𝑃 ( 𝑅𝐷 ) ) )
21 11 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → 𝐾 ∈ Lat )
22 1 5 atbase ( 𝑃𝐴𝑃𝐵 )
23 12 22 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → 𝑃𝐵 )
24 1 2 3 4 5 6 7 8 9 10 cdlemkoatnle ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( 𝑂𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝑂𝑃 ) 𝑊 ) )
25 24 simpld ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑂𝑃 ) ∈ 𝐴 )
26 1 5 atbase ( ( 𝑂𝑃 ) ∈ 𝐴 → ( 𝑂𝑃 ) ∈ 𝐵 )
27 25 26 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑂𝑃 ) ∈ 𝐵 )
28 1 3 5 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ∧ ( 𝑅𝐷 ) ∈ 𝐴 ) → ( 𝑃 ( 𝑅𝐷 ) ) ∈ 𝐵 )
29 11 12 17 28 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑃 ( 𝑅𝐷 ) ) ∈ 𝐵 )
30 1 2 3 latjle12 ( ( 𝐾 ∈ Lat ∧ ( 𝑃𝐵 ∧ ( 𝑂𝑃 ) ∈ 𝐵 ∧ ( 𝑃 ( 𝑅𝐷 ) ) ∈ 𝐵 ) ) → ( ( 𝑃 ( 𝑃 ( 𝑅𝐷 ) ) ∧ ( 𝑂𝑃 ) ( 𝑃 ( 𝑅𝐷 ) ) ) ↔ ( 𝑃 ( 𝑂𝑃 ) ) ( 𝑃 ( 𝑅𝐷 ) ) ) )
31 21 23 27 29 30 syl13anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( 𝑃 ( 𝑃 ( 𝑅𝐷 ) ) ∧ ( 𝑂𝑃 ) ( 𝑃 ( 𝑅𝐷 ) ) ) ↔ ( 𝑃 ( 𝑂𝑃 ) ) ( 𝑃 ( 𝑅𝐷 ) ) ) )
32 19 20 31 mpbi2and ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑃 ( 𝑂𝑃 ) ) ( 𝑃 ( 𝑅𝐷 ) ) )
33 simp22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
34 2 3 5 6 7 8 trljat3 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐷𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑃 ( 𝑅𝐷 ) ) = ( ( 𝐷𝑃 ) ( 𝑅𝐷 ) ) )
35 13 14 33 34 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑃 ( 𝑅𝐷 ) ) = ( ( 𝐷𝑃 ) ( 𝑅𝐷 ) ) )
36 32 35 breqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑃 ( 𝑂𝑃 ) ) ( ( 𝐷𝑃 ) ( 𝑅𝐷 ) ) )