Metamath Proof Explorer


Theorem cdlemkole

Description: Utility lemma. (Contributed by NM, 2-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b 𝐵 = ( Base ‘ 𝐾 )
cdlemk1.l = ( le ‘ 𝐾 )
cdlemk1.j = ( join ‘ 𝐾 )
cdlemk1.m = ( meet ‘ 𝐾 )
cdlemk1.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemk1.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemk1.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemk1.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemk1.s 𝑆 = ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) )
cdlemk1.o 𝑂 = ( 𝑆𝐷 )
Assertion cdlemkole ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑂𝑃 ) ( 𝑃 ( 𝑅𝐷 ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk1.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemk1.l = ( le ‘ 𝐾 )
3 cdlemk1.j = ( join ‘ 𝐾 )
4 cdlemk1.m = ( meet ‘ 𝐾 )
5 cdlemk1.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemk1.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemk1.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemk1.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemk1.s 𝑆 = ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) )
10 cdlemk1.o 𝑂 = ( 𝑆𝐷 )
11 1 2 3 4 5 6 7 8 9 10 cdlemk13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑂𝑃 ) = ( ( 𝑃 ( 𝑅𝐷 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐷 𝐹 ) ) ) ) )
12 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → 𝐾 ∈ HL )
13 12 hllatd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → 𝐾 ∈ Lat )
14 simp22l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → 𝑃𝐴 )
15 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
16 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → 𝐷𝑇 )
17 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → 𝐷 ≠ ( I ↾ 𝐵 ) )
18 1 5 6 7 8 trlnidat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐷𝑇𝐷 ≠ ( I ↾ 𝐵 ) ) → ( 𝑅𝐷 ) ∈ 𝐴 )
19 15 16 17 18 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑅𝐷 ) ∈ 𝐴 )
20 1 3 5 hlatjcl ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ∧ ( 𝑅𝐷 ) ∈ 𝐴 ) → ( 𝑃 ( 𝑅𝐷 ) ) ∈ 𝐵 )
21 12 14 19 20 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑃 ( 𝑅𝐷 ) ) ∈ 𝐵 )
22 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → 𝑁𝑇 )
23 2 5 6 7 ltrnat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑁𝑇𝑃𝐴 ) → ( 𝑁𝑃 ) ∈ 𝐴 )
24 15 22 14 23 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑁𝑃 ) ∈ 𝐴 )
25 simp12 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → 𝐹𝑇 )
26 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) )
27 5 6 7 8 trlcocnvat ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝐷𝑇𝐹𝑇 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) → ( 𝑅 ‘ ( 𝐷 𝐹 ) ) ∈ 𝐴 )
28 15 16 25 26 27 syl121anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑅 ‘ ( 𝐷 𝐹 ) ) ∈ 𝐴 )
29 1 3 5 hlatjcl ( ( 𝐾 ∈ HL ∧ ( 𝑁𝑃 ) ∈ 𝐴 ∧ ( 𝑅 ‘ ( 𝐷 𝐹 ) ) ∈ 𝐴 ) → ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐷 𝐹 ) ) ) ∈ 𝐵 )
30 12 24 28 29 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐷 𝐹 ) ) ) ∈ 𝐵 )
31 1 2 4 latmle1 ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ( 𝑅𝐷 ) ) ∈ 𝐵 ∧ ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐷 𝐹 ) ) ) ∈ 𝐵 ) → ( ( 𝑃 ( 𝑅𝐷 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐷 𝐹 ) ) ) ) ( 𝑃 ( 𝑅𝐷 ) ) )
32 13 21 30 31 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( 𝑃 ( 𝑅𝐷 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐷 𝐹 ) ) ) ) ( 𝑃 ( 𝑅𝐷 ) ) )
33 11 32 eqbrtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑂𝑃 ) ( 𝑃 ( 𝑅𝐷 ) ) )