Metamath Proof Explorer


Theorem cdlemk13

Description: Part of proof of Lemma K of Crawley p. 118. Line 13 on p. 119. O , D are k_1, f_1. (Contributed by NM, 1-Jul-2013)

Ref Expression
Hypotheses cdlemk1.b 𝐵 = ( Base ‘ 𝐾 )
cdlemk1.l = ( le ‘ 𝐾 )
cdlemk1.j = ( join ‘ 𝐾 )
cdlemk1.m = ( meet ‘ 𝐾 )
cdlemk1.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemk1.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemk1.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemk1.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemk1.s 𝑆 = ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) )
cdlemk1.o 𝑂 = ( 𝑆𝐷 )
Assertion cdlemk13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑂𝑃 ) = ( ( 𝑃 ( 𝑅𝐷 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐷 𝐹 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk1.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemk1.l = ( le ‘ 𝐾 )
3 cdlemk1.j = ( join ‘ 𝐾 )
4 cdlemk1.m = ( meet ‘ 𝐾 )
5 cdlemk1.a 𝐴 = ( Atoms ‘ 𝐾 )
6 cdlemk1.h 𝐻 = ( LHyp ‘ 𝐾 )
7 cdlemk1.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemk1.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
9 cdlemk1.s 𝑆 = ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) )
10 cdlemk1.o 𝑂 = ( 𝑆𝐷 )
11 10 fveq1i ( 𝑂𝑃 ) = ( ( 𝑆𝐷 ) ‘ 𝑃 )
12 1 2 3 5 6 7 8 4 9 cdlemksv2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( 𝑆𝐷 ) ‘ 𝑃 ) = ( ( 𝑃 ( 𝑅𝐷 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐷 𝐹 ) ) ) ) )
13 11 12 syl5eq ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐷𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐷 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐷 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑂𝑃 ) = ( ( 𝑃 ( 𝑅𝐷 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐷 𝐹 ) ) ) ) )