Metamath Proof Explorer


Theorem cdlemksv2

Description: Part of proof of Lemma K of Crawley p. 118. Value of the sigma(p) function S at the fixed P parameter. (Contributed by NM, 26-Jun-2013)

Ref Expression
Hypotheses cdlemk.b 𝐵 = ( Base ‘ 𝐾 )
cdlemk.l = ( le ‘ 𝐾 )
cdlemk.j = ( join ‘ 𝐾 )
cdlemk.a 𝐴 = ( Atoms ‘ 𝐾 )
cdlemk.h 𝐻 = ( LHyp ‘ 𝐾 )
cdlemk.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
cdlemk.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
cdlemk.m = ( meet ‘ 𝐾 )
cdlemk.s 𝑆 = ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) )
Assertion cdlemksv2 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( 𝑆𝐺 ) ‘ 𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cdlemk.b 𝐵 = ( Base ‘ 𝐾 )
2 cdlemk.l = ( le ‘ 𝐾 )
3 cdlemk.j = ( join ‘ 𝐾 )
4 cdlemk.a 𝐴 = ( Atoms ‘ 𝐾 )
5 cdlemk.h 𝐻 = ( LHyp ‘ 𝐾 )
6 cdlemk.t 𝑇 = ( ( LTrn ‘ 𝐾 ) ‘ 𝑊 )
7 cdlemk.r 𝑅 = ( ( trL ‘ 𝐾 ) ‘ 𝑊 )
8 cdlemk.m = ( meet ‘ 𝐾 )
9 cdlemk.s 𝑆 = ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) )
10 simp13 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → 𝐺𝑇 )
11 1 2 3 4 5 6 7 8 9 cdlemksv ( 𝐺𝑇 → ( 𝑆𝐺 ) = ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ) )
12 10 11 syl ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑆𝐺 ) = ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ) )
13 12 eqcomd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ) = ( 𝑆𝐺 ) )
14 1 2 3 4 5 6 7 8 9 cdlemksel ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑆𝐺 ) ∈ 𝑇 )
15 simp11 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) )
16 simp22 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) )
17 simp1 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) )
18 simp21 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → 𝑁𝑇 )
19 2 4 5 6 ltrnel ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( ( 𝑁𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝑁𝑃 ) 𝑊 ) )
20 15 18 16 19 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( 𝑁𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝑁𝑃 ) 𝑊 ) )
21 simp11l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → 𝐾 ∈ HL )
22 simp22l ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → 𝑃𝐴 )
23 20 simpld ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑁𝑃 ) ∈ 𝐴 )
24 2 3 4 hlatlej2 ( ( 𝐾 ∈ HL ∧ 𝑃𝐴 ∧ ( 𝑁𝑃 ) ∈ 𝐴 ) → ( 𝑁𝑃 ) ( 𝑃 ( 𝑁𝑃 ) ) )
25 21 22 23 24 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑁𝑃 ) ( 𝑃 ( 𝑁𝑃 ) ) )
26 simp23 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑅𝐹 ) = ( 𝑅𝑁 ) )
27 26 oveq2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑃 ( 𝑅𝐹 ) ) = ( 𝑃 ( 𝑅𝑁 ) ) )
28 2 3 4 5 6 7 trljat1 ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ) → ( 𝑃 ( 𝑅𝑁 ) ) = ( 𝑃 ( 𝑁𝑃 ) ) )
29 15 18 16 28 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑃 ( 𝑅𝑁 ) ) = ( 𝑃 ( 𝑁𝑃 ) ) )
30 27 29 eqtr2d ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑃 ( 𝑁𝑃 ) ) = ( 𝑃 ( 𝑅𝐹 ) ) )
31 25 30 breqtrd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑁𝑃 ) ( 𝑃 ( 𝑅𝐹 ) ) )
32 simp31 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → 𝐹 ≠ ( I ↾ 𝐵 ) )
33 simp32 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → 𝐺 ≠ ( I ↾ 𝐵 ) )
34 simp33 ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) )
35 34 necomd ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) )
36 eqid ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) )
37 1 2 3 8 4 5 6 7 36 cdlemh ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( ( 𝑁𝑃 ) ∈ 𝐴 ∧ ¬ ( 𝑁𝑃 ) 𝑊 ) ∧ ( 𝑁𝑃 ) ( 𝑃 ( 𝑅𝐹 ) ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐹 ) ≠ ( 𝑅𝐺 ) ) ) → ( ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ∈ 𝐴 ∧ ¬ ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) 𝑊 ) )
38 17 16 20 31 32 33 35 37 syl133anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ∈ 𝐴 ∧ ¬ ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) 𝑊 ) )
39 2 4 5 6 cdleme ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ∈ 𝐴 ∧ ¬ ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) 𝑊 ) ) → ∃! 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) )
40 15 16 38 39 syl3anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ∃! 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) )
41 nfcv 𝑖 𝑇
42 nfriota1 𝑖 ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) )
43 41 42 nfmpt 𝑖 ( 𝑓𝑇 ↦ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝑓 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝑓 𝐹 ) ) ) ) ) )
44 9 43 nfcxfr 𝑖 𝑆
45 nfcv 𝑖 𝐺
46 44 45 nffv 𝑖 ( 𝑆𝐺 )
47 nfcv 𝑖 𝑃
48 46 47 nffv 𝑖 ( ( 𝑆𝐺 ) ‘ 𝑃 )
49 48 nfeq1 𝑖 ( ( 𝑆𝐺 ) ‘ 𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) )
50 fveq1 ( 𝑖 = ( 𝑆𝐺 ) → ( 𝑖𝑃 ) = ( ( 𝑆𝐺 ) ‘ 𝑃 ) )
51 50 eqeq1d ( 𝑖 = ( 𝑆𝐺 ) → ( ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ↔ ( ( 𝑆𝐺 ) ‘ 𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ) )
52 46 49 51 riota2f ( ( ( 𝑆𝐺 ) ∈ 𝑇 ∧ ∃! 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ) → ( ( ( 𝑆𝐺 ) ‘ 𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ↔ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ) = ( 𝑆𝐺 ) ) )
53 14 40 52 syl2anc ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( ( 𝑆𝐺 ) ‘ 𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ↔ ( 𝑖𝑇 ( 𝑖𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) ) = ( 𝑆𝐺 ) ) )
54 13 53 mpbird ( ( ( ( 𝐾 ∈ HL ∧ 𝑊𝐻 ) ∧ 𝐹𝑇𝐺𝑇 ) ∧ ( 𝑁𝑇 ∧ ( 𝑃𝐴 ∧ ¬ 𝑃 𝑊 ) ∧ ( 𝑅𝐹 ) = ( 𝑅𝑁 ) ) ∧ ( 𝐹 ≠ ( I ↾ 𝐵 ) ∧ 𝐺 ≠ ( I ↾ 𝐵 ) ∧ ( 𝑅𝐺 ) ≠ ( 𝑅𝐹 ) ) ) → ( ( 𝑆𝐺 ) ‘ 𝑃 ) = ( ( 𝑃 ( 𝑅𝐺 ) ) ( ( 𝑁𝑃 ) ( 𝑅 ‘ ( 𝐺 𝐹 ) ) ) ) )