Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk.b |
|- B = ( Base ` K ) |
2 |
|
cdlemk.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemk.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemk.a |
|- A = ( Atoms ` K ) |
5 |
|
cdlemk.h |
|- H = ( LHyp ` K ) |
6 |
|
cdlemk.t |
|- T = ( ( LTrn ` K ) ` W ) |
7 |
|
cdlemk.r |
|- R = ( ( trL ` K ) ` W ) |
8 |
|
cdlemk.m |
|- ./\ = ( meet ` K ) |
9 |
|
cdlemk.s |
|- S = ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
10 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> G e. T ) |
11 |
1 2 3 4 5 6 7 8 9
|
cdlemksv |
|- ( G e. T -> ( S ` G ) = ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) ) |
12 |
10 11
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( S ` G ) = ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) ) |
13 |
12
|
eqcomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) = ( S ` G ) ) |
14 |
1 2 3 4 5 6 7 8 9
|
cdlemksel |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( S ` G ) e. T ) |
15 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( K e. HL /\ W e. H ) ) |
16 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
17 |
|
simp1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) ) |
18 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> N e. T ) |
19 |
2 4 5 6
|
ltrnel |
|- ( ( ( K e. HL /\ W e. H ) /\ N e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( ( N ` P ) e. A /\ -. ( N ` P ) .<_ W ) ) |
20 |
15 18 16 19
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( ( N ` P ) e. A /\ -. ( N ` P ) .<_ W ) ) |
21 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> K e. HL ) |
22 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> P e. A ) |
23 |
20
|
simpld |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( N ` P ) e. A ) |
24 |
2 3 4
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ ( N ` P ) e. A ) -> ( N ` P ) .<_ ( P .\/ ( N ` P ) ) ) |
25 |
21 22 23 24
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( N ` P ) .<_ ( P .\/ ( N ` P ) ) ) |
26 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( R ` F ) = ( R ` N ) ) |
27 |
26
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( P .\/ ( R ` F ) ) = ( P .\/ ( R ` N ) ) ) |
28 |
2 3 4 5 6 7
|
trljat1 |
|- ( ( ( K e. HL /\ W e. H ) /\ N e. T /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ ( R ` N ) ) = ( P .\/ ( N ` P ) ) ) |
29 |
15 18 16 28
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( P .\/ ( R ` N ) ) = ( P .\/ ( N ` P ) ) ) |
30 |
27 29
|
eqtr2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( P .\/ ( N ` P ) ) = ( P .\/ ( R ` F ) ) ) |
31 |
25 30
|
breqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( N ` P ) .<_ ( P .\/ ( R ` F ) ) ) |
32 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> F =/= ( _I |` B ) ) |
33 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> G =/= ( _I |` B ) ) |
34 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( R ` G ) =/= ( R ` F ) ) |
35 |
34
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( R ` F ) =/= ( R ` G ) ) |
36 |
|
eqid |
|- ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) |
37 |
1 2 3 8 4 5 6 7 36
|
cdlemh |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( ( N ` P ) e. A /\ -. ( N ` P ) .<_ W ) /\ ( N ` P ) .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) e. A /\ -. ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ W ) ) |
38 |
17 16 20 31 32 33 35 37
|
syl133anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) e. A /\ -. ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ W ) ) |
39 |
2 4 5 6
|
cdleme |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) e. A /\ -. ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) .<_ W ) ) -> E! i e. T ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) |
40 |
15 16 38 39
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> E! i e. T ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) |
41 |
|
nfcv |
|- F/_ i T |
42 |
|
nfriota1 |
|- F/_ i ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) |
43 |
41 42
|
nfmpt |
|- F/_ i ( f e. T |-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` f ) ) ./\ ( ( N ` P ) .\/ ( R ` ( f o. `' F ) ) ) ) ) ) |
44 |
9 43
|
nfcxfr |
|- F/_ i S |
45 |
|
nfcv |
|- F/_ i G |
46 |
44 45
|
nffv |
|- F/_ i ( S ` G ) |
47 |
|
nfcv |
|- F/_ i P |
48 |
46 47
|
nffv |
|- F/_ i ( ( S ` G ) ` P ) |
49 |
48
|
nfeq1 |
|- F/ i ( ( S ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) |
50 |
|
fveq1 |
|- ( i = ( S ` G ) -> ( i ` P ) = ( ( S ` G ) ` P ) ) |
51 |
50
|
eqeq1d |
|- ( i = ( S ` G ) -> ( ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) <-> ( ( S ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) ) |
52 |
46 49 51
|
riota2f |
|- ( ( ( S ` G ) e. T /\ E! i e. T ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) -> ( ( ( S ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) <-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) = ( S ` G ) ) ) |
53 |
14 40 52
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( ( ( S ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) <-> ( iota_ i e. T ( i ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) = ( S ` G ) ) ) |
54 |
13 53
|
mpbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( N e. T /\ ( P e. A /\ -. P .<_ W ) /\ ( R ` F ) = ( R ` N ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` G ) =/= ( R ` F ) ) ) -> ( ( S ` G ) ` P ) = ( ( P .\/ ( R ` G ) ) ./\ ( ( N ` P ) .\/ ( R ` ( G o. `' F ) ) ) ) ) |