Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemh.b |
|- B = ( Base ` K ) |
2 |
|
cdlemh.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemh.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemh.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemh.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemh.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemh.t |
|- T = ( ( LTrn ` K ) ` W ) |
8 |
|
cdlemh.r |
|- R = ( ( trL ` K ) ` W ) |
9 |
|
cdlemh.s |
|- S = ( ( P .\/ ( R ` G ) ) ./\ ( Q .\/ ( R ` ( G o. `' F ) ) ) ) |
10 |
|
simp1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) ) |
11 |
|
simp21l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> P e. A ) |
12 |
|
simp22l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> Q e. A ) |
13 |
|
simp23 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> Q .<_ ( P .\/ ( R ` F ) ) ) |
14 |
|
simp33 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` F ) =/= ( R ` G ) ) |
15 |
1 2 3 4 5 6 7 8 9
|
cdlemh1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( P e. A /\ Q e. A ) /\ ( Q .<_ ( P .\/ ( R ` F ) ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( S .\/ ( R ` ( G o. `' F ) ) ) = ( Q .\/ ( R ` ( G o. `' F ) ) ) ) |
16 |
10 11 12 13 14 15
|
syl122anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( S .\/ ( R ` ( G o. `' F ) ) ) = ( Q .\/ ( R ` ( G o. `' F ) ) ) ) |
17 |
|
oveq1 |
|- ( S = ( 0. ` K ) -> ( S .\/ ( R ` ( G o. `' F ) ) ) = ( ( 0. ` K ) .\/ ( R ` ( G o. `' F ) ) ) ) |
18 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> K e. HL ) |
19 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
20 |
18 19
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> K e. OL ) |
21 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> W e. H ) |
22 |
18 21
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( K e. HL /\ W e. H ) ) |
23 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> G e. T ) |
24 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> F e. T ) |
25 |
6 7
|
ltrncnv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> `' F e. T ) |
26 |
22 24 25
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> `' F e. T ) |
27 |
23 26
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( G e. T /\ `' F e. T ) ) |
28 |
14
|
necomd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` G ) =/= ( R ` F ) ) |
29 |
6 7 8
|
trlcnv |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T ) -> ( R ` `' F ) = ( R ` F ) ) |
30 |
22 24 29
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` `' F ) = ( R ` F ) ) |
31 |
28 30
|
neeqtrrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` G ) =/= ( R ` `' F ) ) |
32 |
5 6 7 8
|
trlcoat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ `' F e. T ) /\ ( R ` G ) =/= ( R ` `' F ) ) -> ( R ` ( G o. `' F ) ) e. A ) |
33 |
22 27 31 32
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` ( G o. `' F ) ) e. A ) |
34 |
1 5
|
atbase |
|- ( ( R ` ( G o. `' F ) ) e. A -> ( R ` ( G o. `' F ) ) e. B ) |
35 |
33 34
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` ( G o. `' F ) ) e. B ) |
36 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
37 |
1 3 36
|
olj02 |
|- ( ( K e. OL /\ ( R ` ( G o. `' F ) ) e. B ) -> ( ( 0. ` K ) .\/ ( R ` ( G o. `' F ) ) ) = ( R ` ( G o. `' F ) ) ) |
38 |
20 35 37
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( 0. ` K ) .\/ ( R ` ( G o. `' F ) ) ) = ( R ` ( G o. `' F ) ) ) |
39 |
17 38
|
sylan9eqr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ S = ( 0. ` K ) ) -> ( S .\/ ( R ` ( G o. `' F ) ) ) = ( R ` ( G o. `' F ) ) ) |
40 |
6 7
|
ltrnco |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ `' F e. T ) -> ( G o. `' F ) e. T ) |
41 |
22 23 26 40
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( G o. `' F ) e. T ) |
42 |
2 6 7 8
|
trlle |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G o. `' F ) e. T ) -> ( R ` ( G o. `' F ) ) .<_ W ) |
43 |
22 41 42
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` ( G o. `' F ) ) .<_ W ) |
44 |
|
simp22r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> -. Q .<_ W ) |
45 |
|
nbrne2 |
|- ( ( ( R ` ( G o. `' F ) ) .<_ W /\ -. Q .<_ W ) -> ( R ` ( G o. `' F ) ) =/= Q ) |
46 |
45
|
necomd |
|- ( ( ( R ` ( G o. `' F ) ) .<_ W /\ -. Q .<_ W ) -> Q =/= ( R ` ( G o. `' F ) ) ) |
47 |
43 44 46
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> Q =/= ( R ` ( G o. `' F ) ) ) |
48 |
|
eqid |
|- ( LLines ` K ) = ( LLines ` K ) |
49 |
3 5 48
|
llni2 |
|- ( ( ( K e. HL /\ Q e. A /\ ( R ` ( G o. `' F ) ) e. A ) /\ Q =/= ( R ` ( G o. `' F ) ) ) -> ( Q .\/ ( R ` ( G o. `' F ) ) ) e. ( LLines ` K ) ) |
50 |
18 12 33 47 49
|
syl31anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( Q .\/ ( R ` ( G o. `' F ) ) ) e. ( LLines ` K ) ) |
51 |
5 48
|
llnneat |
|- ( ( K e. HL /\ ( Q .\/ ( R ` ( G o. `' F ) ) ) e. ( LLines ` K ) ) -> -. ( Q .\/ ( R ` ( G o. `' F ) ) ) e. A ) |
52 |
18 50 51
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> -. ( Q .\/ ( R ` ( G o. `' F ) ) ) e. A ) |
53 |
|
nelne2 |
|- ( ( ( R ` ( G o. `' F ) ) e. A /\ -. ( Q .\/ ( R ` ( G o. `' F ) ) ) e. A ) -> ( R ` ( G o. `' F ) ) =/= ( Q .\/ ( R ` ( G o. `' F ) ) ) ) |
54 |
33 52 53
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` ( G o. `' F ) ) =/= ( Q .\/ ( R ` ( G o. `' F ) ) ) ) |
55 |
54
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ S = ( 0. ` K ) ) -> ( R ` ( G o. `' F ) ) =/= ( Q .\/ ( R ` ( G o. `' F ) ) ) ) |
56 |
39 55
|
eqnetrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) /\ S = ( 0. ` K ) ) -> ( S .\/ ( R ` ( G o. `' F ) ) ) =/= ( Q .\/ ( R ` ( G o. `' F ) ) ) ) |
57 |
56
|
ex |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( S = ( 0. ` K ) -> ( S .\/ ( R ` ( G o. `' F ) ) ) =/= ( Q .\/ ( R ` ( G o. `' F ) ) ) ) ) |
58 |
57
|
necon2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( S .\/ ( R ` ( G o. `' F ) ) ) = ( Q .\/ ( R ` ( G o. `' F ) ) ) -> S =/= ( 0. ` K ) ) ) |
59 |
16 58
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> S =/= ( 0. ` K ) ) |
60 |
|
simp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> G =/= ( _I |` B ) ) |
61 |
1 5 6 7 8
|
trlnidat |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T /\ G =/= ( _I |` B ) ) -> ( R ` G ) e. A ) |
62 |
22 23 60 61
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` G ) e. A ) |
63 |
2 3 5
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ ( R ` G ) e. A ) -> ( R ` G ) .<_ ( P .\/ ( R ` G ) ) ) |
64 |
18 11 62 63
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` G ) .<_ ( P .\/ ( R ` G ) ) ) |
65 |
|
simp22 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
66 |
|
simp31 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> F =/= ( _I |` B ) ) |
67 |
1 6 7
|
ltrncnvnid |
|- ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ F =/= ( _I |` B ) ) -> `' F =/= ( _I |` B ) ) |
68 |
22 24 66 67
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> `' F =/= ( _I |` B ) ) |
69 |
1 6 7 8
|
trlcone |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ `' F e. T ) /\ ( ( R ` G ) =/= ( R ` `' F ) /\ `' F =/= ( _I |` B ) ) ) -> ( R ` G ) =/= ( R ` ( G o. `' F ) ) ) |
70 |
69
|
necomd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( G e. T /\ `' F e. T ) /\ ( ( R ` G ) =/= ( R ` `' F ) /\ `' F =/= ( _I |` B ) ) ) -> ( R ` ( G o. `' F ) ) =/= ( R ` G ) ) |
71 |
22 23 26 31 68 70
|
syl122anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` ( G o. `' F ) ) =/= ( R ` G ) ) |
72 |
2 6 7 8
|
trlle |
|- ( ( ( K e. HL /\ W e. H ) /\ G e. T ) -> ( R ` G ) .<_ W ) |
73 |
22 23 72
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( R ` G ) .<_ W ) |
74 |
2 3 5 6
|
lhp2atnle |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R ` ( G o. `' F ) ) =/= ( R ` G ) ) /\ ( ( R ` ( G o. `' F ) ) e. A /\ ( R ` ( G o. `' F ) ) .<_ W ) /\ ( ( R ` G ) e. A /\ ( R ` G ) .<_ W ) ) -> -. ( R ` G ) .<_ ( Q .\/ ( R ` ( G o. `' F ) ) ) ) |
75 |
22 65 71 33 43 62 73 74
|
syl322anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> -. ( R ` G ) .<_ ( Q .\/ ( R ` ( G o. `' F ) ) ) ) |
76 |
|
nbrne1 |
|- ( ( ( R ` G ) .<_ ( P .\/ ( R ` G ) ) /\ -. ( R ` G ) .<_ ( Q .\/ ( R ` ( G o. `' F ) ) ) ) -> ( P .\/ ( R ` G ) ) =/= ( Q .\/ ( R ` ( G o. `' F ) ) ) ) |
77 |
64 75 76
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( P .\/ ( R ` G ) ) =/= ( Q .\/ ( R ` ( G o. `' F ) ) ) ) |
78 |
3 4 36 5
|
2atmat0 |
|- ( ( ( K e. HL /\ P e. A /\ ( R ` G ) e. A ) /\ ( Q e. A /\ ( R ` ( G o. `' F ) ) e. A /\ ( P .\/ ( R ` G ) ) =/= ( Q .\/ ( R ` ( G o. `' F ) ) ) ) ) -> ( ( ( P .\/ ( R ` G ) ) ./\ ( Q .\/ ( R ` ( G o. `' F ) ) ) ) e. A \/ ( ( P .\/ ( R ` G ) ) ./\ ( Q .\/ ( R ` ( G o. `' F ) ) ) ) = ( 0. ` K ) ) ) |
79 |
18 11 62 12 33 77 78
|
syl33anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( ( P .\/ ( R ` G ) ) ./\ ( Q .\/ ( R ` ( G o. `' F ) ) ) ) e. A \/ ( ( P .\/ ( R ` G ) ) ./\ ( Q .\/ ( R ` ( G o. `' F ) ) ) ) = ( 0. ` K ) ) ) |
80 |
9
|
eleq1i |
|- ( S e. A <-> ( ( P .\/ ( R ` G ) ) ./\ ( Q .\/ ( R ` ( G o. `' F ) ) ) ) e. A ) |
81 |
9
|
eqeq1i |
|- ( S = ( 0. ` K ) <-> ( ( P .\/ ( R ` G ) ) ./\ ( Q .\/ ( R ` ( G o. `' F ) ) ) ) = ( 0. ` K ) ) |
82 |
80 81
|
orbi12i |
|- ( ( S e. A \/ S = ( 0. ` K ) ) <-> ( ( ( P .\/ ( R ` G ) ) ./\ ( Q .\/ ( R ` ( G o. `' F ) ) ) ) e. A \/ ( ( P .\/ ( R ` G ) ) ./\ ( Q .\/ ( R ` ( G o. `' F ) ) ) ) = ( 0. ` K ) ) ) |
83 |
79 82
|
sylibr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( S e. A \/ S = ( 0. ` K ) ) ) |
84 |
83
|
ord |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( -. S e. A -> S = ( 0. ` K ) ) ) |
85 |
84
|
necon1ad |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( S =/= ( 0. ` K ) -> S e. A ) ) |
86 |
59 85
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> S e. A ) |
87 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
88 |
87 65
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) |
89 |
1 2 3 4 5 6 7 8 9 36
|
cdlemh2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( S ./\ W ) = ( 0. ` K ) ) |
90 |
88 89
|
syld3an2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( S ./\ W ) = ( 0. ` K ) ) |
91 |
2 4 36 5 6
|
lhpmatb |
|- ( ( ( K e. HL /\ W e. H ) /\ S e. A ) -> ( -. S .<_ W <-> ( S ./\ W ) = ( 0. ` K ) ) ) |
92 |
18 21 86 91
|
syl21anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( -. S .<_ W <-> ( S ./\ W ) = ( 0. ` K ) ) ) |
93 |
90 92
|
mpbird |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> -. S .<_ W ) |
94 |
86 93
|
jca |
|- ( ( ( ( K e. HL /\ W e. H ) /\ F e. T /\ G e. T ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ Q .<_ ( P .\/ ( R ` F ) ) ) /\ ( F =/= ( _I |` B ) /\ G =/= ( _I |` B ) /\ ( R ` F ) =/= ( R ` G ) ) ) -> ( S e. A /\ -. S .<_ W ) ) |