Metamath Proof Explorer


Theorem cdlemh

Description: Lemma H of Crawley p. 118. (Contributed by NM, 17-Jun-2013)

Ref Expression
Hypotheses cdlemh.b B = Base K
cdlemh.l ˙ = K
cdlemh.j ˙ = join K
cdlemh.m ˙ = meet K
cdlemh.a A = Atoms K
cdlemh.h H = LHyp K
cdlemh.t T = LTrn K W
cdlemh.r R = trL K W
cdlemh.s S = P ˙ R G ˙ Q ˙ R G F -1
Assertion cdlemh K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G S A ¬ S ˙ W

Proof

Step Hyp Ref Expression
1 cdlemh.b B = Base K
2 cdlemh.l ˙ = K
3 cdlemh.j ˙ = join K
4 cdlemh.m ˙ = meet K
5 cdlemh.a A = Atoms K
6 cdlemh.h H = LHyp K
7 cdlemh.t T = LTrn K W
8 cdlemh.r R = trL K W
9 cdlemh.s S = P ˙ R G ˙ Q ˙ R G F -1
10 simp1 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G K HL W H F T G T
11 simp21l K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G P A
12 simp22l K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G Q A
13 simp23 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G Q ˙ P ˙ R F
14 simp33 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G R F R G
15 1 2 3 4 5 6 7 8 9 cdlemh1 K HL W H F T G T P A Q A Q ˙ P ˙ R F R F R G S ˙ R G F -1 = Q ˙ R G F -1
16 10 11 12 13 14 15 syl122anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G S ˙ R G F -1 = Q ˙ R G F -1
17 oveq1 S = 0. K S ˙ R G F -1 = 0. K ˙ R G F -1
18 simp11l K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G K HL
19 hlol K HL K OL
20 18 19 syl K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G K OL
21 simp11r K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G W H
22 18 21 jca K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G K HL W H
23 simp13 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G G T
24 simp12 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G F T
25 6 7 ltrncnv K HL W H F T F -1 T
26 22 24 25 syl2anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G F -1 T
27 23 26 jca K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G G T F -1 T
28 14 necomd K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G R G R F
29 6 7 8 trlcnv K HL W H F T R F -1 = R F
30 22 24 29 syl2anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G R F -1 = R F
31 28 30 neeqtrrd K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G R G R F -1
32 5 6 7 8 trlcoat K HL W H G T F -1 T R G R F -1 R G F -1 A
33 22 27 31 32 syl3anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G R G F -1 A
34 1 5 atbase R G F -1 A R G F -1 B
35 33 34 syl K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G R G F -1 B
36 eqid 0. K = 0. K
37 1 3 36 olj02 K OL R G F -1 B 0. K ˙ R G F -1 = R G F -1
38 20 35 37 syl2anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G 0. K ˙ R G F -1 = R G F -1
39 17 38 sylan9eqr K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G S = 0. K S ˙ R G F -1 = R G F -1
40 6 7 ltrnco K HL W H G T F -1 T G F -1 T
41 22 23 26 40 syl3anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G G F -1 T
42 2 6 7 8 trlle K HL W H G F -1 T R G F -1 ˙ W
43 22 41 42 syl2anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G R G F -1 ˙ W
44 simp22r K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G ¬ Q ˙ W
45 nbrne2 R G F -1 ˙ W ¬ Q ˙ W R G F -1 Q
46 45 necomd R G F -1 ˙ W ¬ Q ˙ W Q R G F -1
47 43 44 46 syl2anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G Q R G F -1
48 eqid LLines K = LLines K
49 3 5 48 llni2 K HL Q A R G F -1 A Q R G F -1 Q ˙ R G F -1 LLines K
50 18 12 33 47 49 syl31anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G Q ˙ R G F -1 LLines K
51 5 48 llnneat K HL Q ˙ R G F -1 LLines K ¬ Q ˙ R G F -1 A
52 18 50 51 syl2anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G ¬ Q ˙ R G F -1 A
53 nelne2 R G F -1 A ¬ Q ˙ R G F -1 A R G F -1 Q ˙ R G F -1
54 33 52 53 syl2anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G R G F -1 Q ˙ R G F -1
55 54 adantr K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G S = 0. K R G F -1 Q ˙ R G F -1
56 39 55 eqnetrd K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G S = 0. K S ˙ R G F -1 Q ˙ R G F -1
57 56 ex K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G S = 0. K S ˙ R G F -1 Q ˙ R G F -1
58 57 necon2d K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G S ˙ R G F -1 = Q ˙ R G F -1 S 0. K
59 16 58 mpd K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G S 0. K
60 simp32 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G G I B
61 1 5 6 7 8 trlnidat K HL W H G T G I B R G A
62 22 23 60 61 syl3anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G R G A
63 2 3 5 hlatlej2 K HL P A R G A R G ˙ P ˙ R G
64 18 11 62 63 syl3anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G R G ˙ P ˙ R G
65 simp22 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G Q A ¬ Q ˙ W
66 simp31 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G F I B
67 1 6 7 ltrncnvnid K HL W H F T F I B F -1 I B
68 22 24 66 67 syl3anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G F -1 I B
69 1 6 7 8 trlcone K HL W H G T F -1 T R G R F -1 F -1 I B R G R G F -1
70 69 necomd K HL W H G T F -1 T R G R F -1 F -1 I B R G F -1 R G
71 22 23 26 31 68 70 syl122anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G R G F -1 R G
72 2 6 7 8 trlle K HL W H G T R G ˙ W
73 22 23 72 syl2anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G R G ˙ W
74 2 3 5 6 lhp2atnle K HL W H Q A ¬ Q ˙ W R G F -1 R G R G F -1 A R G F -1 ˙ W R G A R G ˙ W ¬ R G ˙ Q ˙ R G F -1
75 22 65 71 33 43 62 73 74 syl322anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G ¬ R G ˙ Q ˙ R G F -1
76 nbrne1 R G ˙ P ˙ R G ¬ R G ˙ Q ˙ R G F -1 P ˙ R G Q ˙ R G F -1
77 64 75 76 syl2anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G P ˙ R G Q ˙ R G F -1
78 3 4 36 5 2atmat0 K HL P A R G A Q A R G F -1 A P ˙ R G Q ˙ R G F -1 P ˙ R G ˙ Q ˙ R G F -1 A P ˙ R G ˙ Q ˙ R G F -1 = 0. K
79 18 11 62 12 33 77 78 syl33anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G P ˙ R G ˙ Q ˙ R G F -1 A P ˙ R G ˙ Q ˙ R G F -1 = 0. K
80 9 eleq1i S A P ˙ R G ˙ Q ˙ R G F -1 A
81 9 eqeq1i S = 0. K P ˙ R G ˙ Q ˙ R G F -1 = 0. K
82 80 81 orbi12i S A S = 0. K P ˙ R G ˙ Q ˙ R G F -1 A P ˙ R G ˙ Q ˙ R G F -1 = 0. K
83 79 82 sylibr K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G S A S = 0. K
84 83 ord K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G ¬ S A S = 0. K
85 84 necon1ad K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G S 0. K S A
86 59 85 mpd K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G S A
87 simp21 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G P A ¬ P ˙ W
88 87 65 jca K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G P A ¬ P ˙ W Q A ¬ Q ˙ W
89 1 2 3 4 5 6 7 8 9 36 cdlemh2 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W F I B G I B R F R G S ˙ W = 0. K
90 88 89 syld3an2 K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G S ˙ W = 0. K
91 2 4 36 5 6 lhpmatb K HL W H S A ¬ S ˙ W S ˙ W = 0. K
92 18 21 86 91 syl21anc K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G ¬ S ˙ W S ˙ W = 0. K
93 90 92 mpbird K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G ¬ S ˙ W
94 86 93 jca K HL W H F T G T P A ¬ P ˙ W Q A ¬ Q ˙ W Q ˙ P ˙ R F F I B G I B R F R G S A ¬ S ˙ W